Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

533 lines
18 KiB

#ifndef CV2_CONVERT_HPP
#define CV2_CONVERT_HPP
#include "cv2.hpp"
#include "cv2_util.hpp"
#include "cv2_numpy.hpp"
#include <vector>
#include <string>
#include <type_traits> // std::enable_if
extern PyTypeObject* pyopencv_Mat_TypePtr;
#define CV_HAS_CONVERSION_ERROR(x) (((x) == -1) && PyErr_Occurred())
inline bool isBool(PyObject* obj) CV_NOEXCEPT
{
return PyArray_IsScalar(obj, Bool) || PyBool_Check(obj);
}
//======================================================================================================================
// exception-safe pyopencv_to
template<typename _Tp> static
bool pyopencv_to_safe(PyObject* obj, _Tp& value, const ArgInfo& info)
{
try
{
return pyopencv_to(obj, value, info);
}
catch (const std::exception &e)
{
PyErr_SetString(opencv_error, cv::format("Conversion error: %s, what: %s", info.name, e.what()).c_str());
return false;
}
catch (...)
{
PyErr_SetString(opencv_error, cv::format("Conversion error: %s", info.name).c_str());
return false;
}
}
//======================================================================================================================
template<typename T, class TEnable = void> // TEnable is used for SFINAE checks
struct PyOpenCV_Converter
{
//static inline bool to(PyObject* obj, T& p, const ArgInfo& info);
//static inline PyObject* from(const T& src);
};
// --- Generic
template<typename T>
bool pyopencv_to(PyObject* obj, T& p, const ArgInfo& info) { return PyOpenCV_Converter<T>::to(obj, p, info); }
template<typename T>
PyObject* pyopencv_from(const T& src) { return PyOpenCV_Converter<T>::from(src); }
// --- Matx
template<typename _Tp, int m, int n>
bool pyopencv_to(PyObject* o, cv::Matx<_Tp, m, n>& mx, const ArgInfo& info)
{
cv::Mat tmp;
if (!pyopencv_to(o, tmp, info)) {
return false;
}
tmp.copyTo(mx);
return true;
}
template<typename _Tp, int m, int n>
PyObject* pyopencv_from(const cv::Matx<_Tp, m, n>& matx)
{
return pyopencv_from(cv::Mat(matx));
}
// --- bool
template<> bool pyopencv_to(PyObject* obj, bool& value, const ArgInfo& info);
template<> PyObject* pyopencv_from(const bool& value);
// --- Mat
template<> bool pyopencv_to(PyObject* o, cv::Mat& m, const ArgInfo& info);
template<> PyObject* pyopencv_from(const cv::Mat& m);
// --- Ptr
template<typename T>
struct PyOpenCV_Converter< cv::Ptr<T> >
{
static PyObject* from(const cv::Ptr<T>& p)
{
if (!p)
Py_RETURN_NONE;
return pyopencv_from(*p);
}
static bool to(PyObject *o, cv::Ptr<T>& p, const ArgInfo& info)
{
if (!o || o == Py_None)
return true;
p = cv::makePtr<T>();
return pyopencv_to(o, *p, info);
}
};
// --- ptr
template<> bool pyopencv_to(PyObject* obj, void*& ptr, const ArgInfo& info);
PyObject* pyopencv_from(void*& ptr);
// --- Scalar
template<> bool pyopencv_to(PyObject *o, cv::Scalar& s, const ArgInfo& info);
template<> PyObject* pyopencv_from(const cv::Scalar& src);
// --- size_t
template<> bool pyopencv_to(PyObject* obj, size_t& value, const ArgInfo& info);
template<> PyObject* pyopencv_from(const size_t& value);
// --- int
template<> bool pyopencv_to(PyObject* obj, int& value, const ArgInfo& info);
template<> PyObject* pyopencv_from(const int& value);
// --- int64
template<> PyObject* pyopencv_from(const int64& value);
// There is conflict between "size_t" and "unsigned int".
// They are the same type on some 32-bit platforms.
template<typename T>
struct PyOpenCV_Converter
< T, typename std::enable_if< std::is_same<unsigned int, T>::value && !std::is_same<unsigned int, size_t>::value >::type >
{
static inline PyObject* from(const unsigned int& value)
{
return PyLong_FromUnsignedLong(value);
}
static inline bool to(PyObject* obj, unsigned int& value, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj || obj == Py_None)
return true;
if(PyInt_Check(obj))
value = (unsigned int)PyInt_AsLong(obj);
else if(PyLong_Check(obj))
value = (unsigned int)PyLong_AsLong(obj);
else
return false;
return value != (unsigned int)-1 || !PyErr_Occurred();
}
};
// --- uchar
template<> bool pyopencv_to(PyObject* obj, uchar& value, const ArgInfo& info);
template<> PyObject* pyopencv_from(const uchar& value);
// --- char
template<> bool pyopencv_to(PyObject* obj, char& value, const ArgInfo& info);
// --- double
template<> bool pyopencv_to(PyObject* obj, double& value, const ArgInfo& info);
template<> PyObject* pyopencv_from(const double& value);
// --- float
template<> bool pyopencv_to(PyObject* obj, float& value, const ArgInfo& info);
template<> PyObject* pyopencv_from(const float& value);
// --- string
template<> bool pyopencv_to(PyObject* obj, cv::String &value, const ArgInfo& info);
template<> PyObject* pyopencv_from(const cv::String& value);
#if CV_VERSION_MAJOR == 3
template<> PyObject* pyopencv_from(const std::string& value);
#endif
// --- Size
template<> bool pyopencv_to(PyObject* obj, cv::Size& sz, const ArgInfo& info);
template<> PyObject* pyopencv_from(const cv::Size& sz);
template<> bool pyopencv_to(PyObject* obj, cv::Size_<float>& sz, const ArgInfo& info);
template<> PyObject* pyopencv_from(const cv::Size_<float>& sz);
// --- Rect
template<> bool pyopencv_to(PyObject* obj, cv::Rect& r, const ArgInfo& info);
template<> PyObject* pyopencv_from(const cv::Rect& r);
template<> bool pyopencv_to(PyObject* obj, cv::Rect2d& r, const ArgInfo& info);
template<> PyObject* pyopencv_from(const cv::Rect2d& r);
// --- RotatedRect
template<> bool pyopencv_to(PyObject* obj, cv::RotatedRect& dst, const ArgInfo& info);
template<> PyObject* pyopencv_from(const cv::RotatedRect& src);
// --- Range
template<> bool pyopencv_to(PyObject* obj, cv::Range& r, const ArgInfo& info);
template<> PyObject* pyopencv_from(const cv::Range& r);
// --- Point
template<> bool pyopencv_to(PyObject* obj, cv::Point& p, const ArgInfo& info);
template<> PyObject* pyopencv_from(const cv::Point& p);
template<> bool pyopencv_to(PyObject* obj, cv::Point2f& p, const ArgInfo& info);
template<> PyObject* pyopencv_from(const cv::Point2f& p);
template<> bool pyopencv_to(PyObject* obj, cv::Point2d& p, const ArgInfo& info);
template<> PyObject* pyopencv_from(const cv::Point2d& p);
template<> bool pyopencv_to(PyObject* obj, cv::Point3f& p, const ArgInfo& info);
template<> PyObject* pyopencv_from(const cv::Point3f& p);
template<> bool pyopencv_to(PyObject* obj, cv::Point3d& p, const ArgInfo& info);
template<> PyObject* pyopencv_from(const cv::Point3d& p);
// --- Vec
template<typename _Tp, int cn>
bool pyopencv_to(PyObject* o, cv::Vec<_Tp, cn>& vec, const ArgInfo& info)
{
return pyopencv_to(o, (cv::Matx<_Tp, cn, 1>&)vec, info);
}
bool pyopencv_to(PyObject* obj, cv::Vec4d& v, ArgInfo& info);
PyObject* pyopencv_from(const cv::Vec4d& v);
bool pyopencv_to(PyObject* obj, cv::Vec4f& v, ArgInfo& info);
PyObject* pyopencv_from(const cv::Vec4f& v);
bool pyopencv_to(PyObject* obj, cv::Vec4i& v, ArgInfo& info);
PyObject* pyopencv_from(const cv::Vec4i& v);
bool pyopencv_to(PyObject* obj, cv::Vec3d& v, ArgInfo& info);
PyObject* pyopencv_from(const cv::Vec3d& v);
bool pyopencv_to(PyObject* obj, cv::Vec3f& v, ArgInfo& info);
PyObject* pyopencv_from(const cv::Vec3f& v);
bool pyopencv_to(PyObject* obj, cv::Vec3i& v, ArgInfo& info);
PyObject* pyopencv_from(const cv::Vec3i& v);
bool pyopencv_to(PyObject* obj, cv::Vec2d& v, ArgInfo& info);
PyObject* pyopencv_from(const cv::Vec2d& v);
bool pyopencv_to(PyObject* obj, cv::Vec2f& v, ArgInfo& info);
PyObject* pyopencv_from(const cv::Vec2f& v);
bool pyopencv_to(PyObject* obj, cv::Vec2i& v, ArgInfo& info);
PyObject* pyopencv_from(const cv::Vec2i& v);
// --- TermCriteria
template<> bool pyopencv_to(PyObject* obj, cv::TermCriteria& dst, const ArgInfo& info);
template<> PyObject* pyopencv_from(const cv::TermCriteria& src);
// --- Moments
template<> PyObject* pyopencv_from(const cv::Moments& m);
// --- pair
template<> PyObject* pyopencv_from(const std::pair<int, double>& src);
// --- vector
template <typename Tp>
struct pyopencvVecConverter;
template <typename Tp>
bool pyopencv_to(PyObject* obj, std::vector<Tp>& value, const ArgInfo& info)
{
if (!obj || obj == Py_None)
{
return true;
}
return pyopencvVecConverter<Tp>::to(obj, value, info);
}
template <typename Tp>
PyObject* pyopencv_from(const std::vector<Tp>& value)
{
return pyopencvVecConverter<Tp>::from(value);
}
template <typename Tp>
static bool pyopencv_to_generic_vec(PyObject* obj, std::vector<Tp>& value, const ArgInfo& info)
{
if (!obj || obj == Py_None)
{
return true;
}
if (!PySequence_Check(obj))
{
failmsg("Can't parse '%s'. Input argument doesn't provide sequence protocol", info.name);
return false;
}
const size_t n = static_cast<size_t>(PySequence_Size(obj));
value.resize(n);
for (size_t i = 0; i < n; i++)
{
SafeSeqItem item_wrap(obj, i);
if (!pyopencv_to(item_wrap.item, value[i], info))
{
failmsg("Can't parse '%s'. Sequence item with index %lu has a wrong type", info.name, i);
return false;
}
}
return true;
}
template<> inline bool pyopencv_to_generic_vec(PyObject* obj, std::vector<bool>& value, const ArgInfo& info)
{
if (!obj || obj == Py_None)
{
return true;
}
if (!PySequence_Check(obj))
{
failmsg("Can't parse '%s'. Input argument doesn't provide sequence protocol", info.name);
return false;
}
const size_t n = static_cast<size_t>(PySequence_Size(obj));
value.resize(n);
for (size_t i = 0; i < n; i++)
{
SafeSeqItem item_wrap(obj, i);
bool elem{};
if (!pyopencv_to(item_wrap.item, elem, info))
{
failmsg("Can't parse '%s'. Sequence item with index %lu has a wrong type", info.name, i);
return false;
}
value[i] = elem;
}
return true;
}
template <typename Tp>
static PyObject* pyopencv_from_generic_vec(const std::vector<Tp>& value)
{
Py_ssize_t n = static_cast<Py_ssize_t>(value.size());
PySafeObject seq(PyTuple_New(n));
for (Py_ssize_t i = 0; i < n; i++)
{
PyObject* item = pyopencv_from(value[i]);
// If item can't be assigned - PyTuple_SetItem raises exception and returns -1.
if (!item || PyTuple_SetItem(seq, i, item) == -1)
{
return NULL;
}
}
return seq.release();
}
template<> inline PyObject* pyopencv_from_generic_vec(const std::vector<bool>& value)
{
Py_ssize_t n = static_cast<Py_ssize_t>(value.size());
PySafeObject seq(PyTuple_New(n));
for (Py_ssize_t i = 0; i < n; i++)
{
bool elem = value[i];
PyObject* item = pyopencv_from(elem);
// If item can't be assigned - PyTuple_SetItem raises exception and returns -1.
if (!item || PyTuple_SetItem(seq, i, item) == -1)
{
return NULL;
}
}
return seq.release();
}
namespace traits {
template <bool Value>
struct BooleanConstant
{
static const bool value = Value;
typedef BooleanConstant<Value> type;
};
typedef BooleanConstant<true> TrueType;
typedef BooleanConstant<false> FalseType;
template <class T>
struct VoidType {
typedef void type;
};
template <class T, class DType = void>
struct IsRepresentableAsMatDataType : FalseType
{
};
template <class T>
struct IsRepresentableAsMatDataType<T, typename VoidType<typename cv::DataType<T>::channel_type>::type> : TrueType
{
};
// https://github.com/opencv/opencv/issues/20930
template <> struct IsRepresentableAsMatDataType<cv::RotatedRect, void> : FalseType {};
} // namespace traits
template <typename Tp>
struct pyopencvVecConverter
{
typedef typename std::vector<Tp>::iterator VecIt;
static bool to(PyObject* obj, std::vector<Tp>& value, const ArgInfo& info)
{
if (!PyArray_Check(obj))
{
return pyopencv_to_generic_vec(obj, value, info);
}
// If user passed an array it is possible to make faster conversions in several cases
PyArrayObject* array_obj = reinterpret_cast<PyArrayObject*>(obj);
const NPY_TYPES target_type = asNumpyType<Tp>();
const NPY_TYPES source_type = static_cast<NPY_TYPES>(PyArray_TYPE(array_obj));
if (target_type == NPY_OBJECT)
{
// Non-planar arrays representing objects (e.g. array of N Rect is an array of shape Nx4) have NPY_OBJECT
// as their target type.
return pyopencv_to_generic_vec(obj, value, info);
}
if (PyArray_NDIM(array_obj) > 1)
{
failmsg("Can't parse %dD array as '%s' vector argument", PyArray_NDIM(array_obj), info.name);
return false;
}
if (target_type != source_type)
{
// Source type requires conversion
// Allowed conversions for target type is handled in the corresponding pyopencv_to function
return pyopencv_to_generic_vec(obj, value, info);
}
// For all other cases, all array data can be directly copied to std::vector data
// Simple `memcpy` is not possible because NumPy array can reference a slice of the bigger array:
// ```
// arr = np.ones((8, 4, 5), dtype=np.int32)
// convertible_to_vector_of_int = arr[:, 0, 1]
// ```
value.resize(static_cast<size_t>(PyArray_SIZE(array_obj)));
const npy_intp item_step = PyArray_STRIDE(array_obj, 0) / PyArray_ITEMSIZE(array_obj);
const Tp* data_ptr = static_cast<Tp*>(PyArray_DATA(array_obj));
for (VecIt it = value.begin(); it != value.end(); ++it, data_ptr += item_step) {
*it = *data_ptr;
}
return true;
}
static PyObject* from(const std::vector<Tp>& value)
{
if (value.empty())
{
return PyTuple_New(0);
}
return from(value, ::traits::IsRepresentableAsMatDataType<Tp>());
}
private:
static PyObject* from(const std::vector<Tp>& value, ::traits::FalseType)
{
// Underlying type is not representable as Mat Data Type
return pyopencv_from_generic_vec(value);
}
static PyObject* from(const std::vector<Tp>& value, ::traits::TrueType)
{
// Underlying type is representable as Mat Data Type, so faster return type is available
typedef cv::DataType<Tp> DType;
typedef typename DType::channel_type UnderlyingArrayType;
// If Mat is always exposed as NumPy array this code path can be reduced to the following snipped:
// Mat src(value);
// PyObject* array = pyopencv_from(src);
// return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(array));
// This puts unnecessary restrictions on Mat object those might be avoided without losing the performance.
// Moreover, this version is a bit faster, because it doesn't create temporary objects with reference counting.
const NPY_TYPES target_type = asNumpyType<UnderlyingArrayType>();
const int cols = DType::channels;
PyObject* array = NULL;
if (cols == 1)
{
npy_intp dims = static_cast<npy_intp>(value.size());
array = PyArray_SimpleNew(1, &dims, target_type);
}
else
{
npy_intp dims[2] = {static_cast<npy_intp>(value.size()), cols};
array = PyArray_SimpleNew(2, dims, target_type);
}
if(!array)
{
// NumPy arrays with shape (N, 1) and (N) are not equal, so correct error message should distinguish
// them too.
cv::String shape;
if (cols > 1)
{
shape = cv::format("(%d x %d)", static_cast<int>(value.size()), cols);
}
else
{
shape = cv::format("(%d)", static_cast<int>(value.size()));
}
const cv::String error_message = cv::format("Can't allocate NumPy array for vector with dtype=%d and shape=%s",
static_cast<int>(target_type), shape.c_str());
emit_failmsg(PyExc_MemoryError, error_message.c_str());
return array;
}
// Fill the array
PyArrayObject* array_obj = reinterpret_cast<PyArrayObject*>(array);
UnderlyingArrayType* array_data = static_cast<UnderlyingArrayType*>(PyArray_DATA(array_obj));
// if Tp is representable as Mat DataType, so the following cast is pretty safe...
const UnderlyingArrayType* value_data = reinterpret_cast<const UnderlyingArrayType*>(value.data());
memcpy(array_data, value_data, sizeof(UnderlyingArrayType) * value.size() * static_cast<size_t>(cols));
return array;
}
};
// --- tuple
template<std::size_t I = 0, typename... Tp>
inline typename std::enable_if<I == sizeof...(Tp), void>::type
convert_to_python_tuple(const std::tuple<Tp...>&, PyObject*) { }
template<std::size_t I = 0, typename... Tp>
inline typename std::enable_if<I < sizeof...(Tp), void>::type
convert_to_python_tuple(const std::tuple<Tp...>& cpp_tuple, PyObject* py_tuple)
{
PyObject* item = pyopencv_from(std::get<I>(cpp_tuple));
if (!item)
return;
PyTuple_SetItem(py_tuple, I, item);
convert_to_python_tuple<I + 1, Tp...>(cpp_tuple, py_tuple);
}
template<typename... Ts>
PyObject* pyopencv_from(const std::tuple<Ts...>& cpp_tuple)
{
size_t size = sizeof...(Ts);
PyObject* py_tuple = PyTuple_New(size);
convert_to_python_tuple(cpp_tuple, py_tuple);
size_t actual_size = PyTuple_Size(py_tuple);
if (actual_size < size)
{
Py_DECREF(py_tuple);
return NULL;
}
return py_tuple;
}
#endif // CV2_CONVERT_HPP