mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
168 lines
5.0 KiB
168 lines
5.0 KiB
10 years ago
|
/**
|
||
|
* @function Watershed_and_Distance_Transform.cpp
|
||
|
* @brief Sample code showing how to segment overlapping objects using Laplacian filtering, in addition to Watershed and Distance Transformation
|
||
|
* @author OpenCV Team
|
||
|
*/
|
||
|
|
||
|
#include <opencv2/opencv.hpp>
|
||
|
#include <iostream>
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace cv;
|
||
|
|
||
|
int main(int, char** argv)
|
||
|
{
|
||
|
//! [load_image]
|
||
|
// Load the image
|
||
|
Mat src = imread(argv[1]);
|
||
|
|
||
|
// Check if everything was fine
|
||
|
if (!src.data)
|
||
|
return -1;
|
||
|
|
||
|
// Show source image
|
||
|
imshow("Source Image", src);
|
||
|
//! [load_image]
|
||
|
|
||
|
//! [black_bg]
|
||
|
// Change the background from white to black, since that will help later to extract
|
||
|
// better results during the use of Distance Transform
|
||
|
for( int x = 0; x < src.rows; x++ ) {
|
||
|
for( int y = 0; y < src.cols; y++ ) {
|
||
|
if ( src.at<Vec3b>(x, y) == Vec3b(255,255,255) ) {
|
||
|
src.at<Vec3b>(x, y)[0] = 0;
|
||
|
src.at<Vec3b>(x, y)[1] = 0;
|
||
|
src.at<Vec3b>(x, y)[2] = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Show output image
|
||
|
imshow("Black Background Image", src);
|
||
|
//! [black_bg]
|
||
|
|
||
|
//! [sharp]
|
||
|
// Create a kernel that we will use for accuting/sharpening our image
|
||
|
Mat kernel = (Mat_<float>(3,3) <<
|
||
|
1, 1, 1,
|
||
|
1, -8, 1,
|
||
|
1, 1, 1); // an approximation of second derivative, a quite strong kernel
|
||
|
|
||
|
// do the laplacian filtering as it is
|
||
|
// well, we need to convert everything in something more deeper then CV_8U
|
||
|
// because the kernel has some negative values,
|
||
|
// and we can expect in general to have a Laplacian image with negative values
|
||
|
// BUT a 8bits unsigned int (the one we are working with) can contain values from 0 to 255
|
||
|
// so the possible negative number will be truncated
|
||
|
Mat imgLaplacian;
|
||
|
Mat sharp = src; // copy source image to another temporary one
|
||
|
filter2D(sharp, imgLaplacian, CV_32F, kernel);
|
||
|
src.convertTo(sharp, CV_32F);
|
||
|
Mat imgResult = sharp - imgLaplacian;
|
||
|
|
||
|
// convert back to 8bits gray scale
|
||
|
imgResult.convertTo(imgResult, CV_8UC3);
|
||
|
imgLaplacian.convertTo(imgLaplacian, CV_8UC3);
|
||
|
|
||
|
// imshow( "Laplace Filtered Image", imgLaplacian );
|
||
|
imshow( "New Sharped Image", imgResult );
|
||
|
//! [sharp]
|
||
|
|
||
|
src = imgResult; // copy back
|
||
|
|
||
|
//! [bin]
|
||
|
// Create binary image from source image
|
||
|
Mat bw;
|
||
|
cvtColor(src, bw, CV_BGR2GRAY);
|
||
|
threshold(bw, bw, 40, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
|
||
|
imshow("Binary Image", bw);
|
||
|
//! [bin]
|
||
|
|
||
|
//! [dist]
|
||
|
// Perform the distance transform algorithm
|
||
|
Mat dist;
|
||
|
distanceTransform(bw, dist, CV_DIST_L2, 3);
|
||
|
|
||
|
// Normalize the distance image for range = {0.0, 1.0}
|
||
|
// so we can visualize and threshold it
|
||
|
normalize(dist, dist, 0, 1., NORM_MINMAX);
|
||
|
imshow("Distance Transform Image", dist);
|
||
|
//! [dist]
|
||
|
|
||
|
//! [peaks]
|
||
|
// Threshold to obtain the peaks
|
||
|
// This will be the markers for the foreground objects
|
||
|
threshold(dist, dist, .4, 1., CV_THRESH_BINARY);
|
||
|
|
||
|
// Dilate a bit the dist image
|
||
|
Mat kernel1 = Mat::ones(3, 3, CV_8UC1);
|
||
|
dilate(dist, dist, kernel1);
|
||
|
imshow("Peaks", dist);
|
||
|
//! [peaks]
|
||
|
|
||
|
//! [seeds]
|
||
|
// Create the CV_8U version of the distance image
|
||
|
// It is needed for findContours()
|
||
|
Mat dist_8u;
|
||
|
dist.convertTo(dist_8u, CV_8U);
|
||
|
|
||
|
// Find total markers
|
||
|
vector<vector<Point> > contours;
|
||
|
findContours(dist_8u, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
|
||
|
|
||
|
// Create the marker image for the watershed algorithm
|
||
|
Mat markers = Mat::zeros(dist.size(), CV_32SC1);
|
||
|
|
||
|
// Draw the foreground markers
|
||
|
for (size_t i = 0; i < contours.size(); i++)
|
||
|
drawContours(markers, contours, static_cast<int>(i), Scalar::all(static_cast<int>(i)+1), -1);
|
||
|
|
||
|
// Draw the background marker
|
||
|
circle(markers, Point(5,5), 3, CV_RGB(255,255,255), -1);
|
||
|
imshow("Markers", markers*10000);
|
||
|
//! [seeds]
|
||
|
|
||
|
//! [watershed]
|
||
|
// Perform the watershed algorithm
|
||
|
watershed(src, markers);
|
||
|
|
||
|
Mat mark = Mat::zeros(markers.size(), CV_8UC1);
|
||
|
markers.convertTo(mark, CV_8UC1);
|
||
|
bitwise_not(mark, mark);
|
||
|
// imshow("Markers_v2", mark); // uncomment this if you want to see how the mark
|
||
|
// image looks like at that point
|
||
|
|
||
|
// Generate random colors
|
||
|
vector<Vec3b> colors;
|
||
|
for (size_t i = 0; i < contours.size(); i++)
|
||
|
{
|
||
|
int b = theRNG().uniform(0, 255);
|
||
|
int g = theRNG().uniform(0, 255);
|
||
|
int r = theRNG().uniform(0, 255);
|
||
|
|
||
|
colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
|
||
|
}
|
||
|
|
||
|
// Create the result image
|
||
|
Mat dst = Mat::zeros(markers.size(), CV_8UC3);
|
||
|
|
||
|
// Fill labeled objects with random colors
|
||
|
for (int i = 0; i < markers.rows; i++)
|
||
|
{
|
||
|
for (int j = 0; j < markers.cols; j++)
|
||
|
{
|
||
|
int index = markers.at<int>(i,j);
|
||
|
if (index > 0 && index <= static_cast<int>(contours.size()))
|
||
|
dst.at<Vec3b>(i,j) = colors[index-1];
|
||
|
else
|
||
|
dst.at<Vec3b>(i,j) = Vec3b(0,0,0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Visualize the final image
|
||
|
imshow("Final Result", dst);
|
||
|
//! [watershed]
|
||
|
|
||
|
waitKey(0);
|
||
|
return 0;
|
||
|
}
|