Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

53 lines
1.5 KiB

YOLO DNNs {#tutorial_dnn_yolo}
===============================
@prev_tutorial{tutorial_dnn_android}
@next_tutorial{tutorial_dnn_javascript}
| | |
| -: | :- |
| Original author | Alessandro de Oliveira Faria |
| Compatibility | OpenCV >= 3.3.1 |
Introduction
------------
In this text you will learn how to use opencv_dnn module using yolo_object_detection (Sample of using OpenCV dnn module in real time with device capture, video and image).
We will demonstrate results of this example on the following picture.
![Picture example](images/yolo.jpg)
Examples
--------
VIDEO DEMO:
@youtube{NHtRlndE2cg}
Source Code
-----------
Use a universal sample for object detection models written
[in C++](https://github.com/opencv/opencv/blob/master/samples/dnn/object_detection.cpp) and
[in Python](https://github.com/opencv/opencv/blob/master/samples/dnn/object_detection.py) languages
Usage examples
--------------
Execute in webcam:
@code{.bash}
$ example_dnn_object_detection --config=[PATH-TO-DARKNET]/cfg/yolo.cfg --model=[PATH-TO-DARKNET]/yolo.weights --classes=object_detection_classes_pascal_voc.txt --width=416 --height=416 --scale=0.00392 --rgb
@endcode
Execute with image or video file:
@code{.bash}
$ example_dnn_object_detection --config=[PATH-TO-DARKNET]/cfg/yolo.cfg --model=[PATH-TO-DARKNET]/yolo.weights --classes=object_detection_classes_pascal_voc.txt --width=416 --height=416 --scale=0.00392 --input=[PATH-TO-IMAGE-OR-VIDEO-FILE] --rgb
@endcode
Questions and suggestions email to: Alessandro de Oliveira Faria cabelo@opensuse.org or OpenCV Team.