/*
* Copyright ( c ) 2011. Philipp Wagner < bytefish [ at ] gmx [ dot ] de > .
* Released to public domain under terms of the BSD Simplified license .
*
* Redistribution and use in source and binary forms , with or without
* modification , are permitted provided that the following conditions are met :
* * Redistributions of source code must retain the above copyright
* notice , this list of conditions and the following disclaimer .
* * Redistributions in binary form must reproduce the above copyright
* notice , this list of conditions and the following disclaimer in the
* documentation and / or other materials provided with the distribution .
* * Neither the name of the organization nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission .
*
* See < http : //www.opensource.org/licenses/bsd-license>
*/
# include "precomp.hpp"
# include <iostream>
# include <map>
# include <set>
namespace cv
{
// Removes duplicate elements in a given vector.
template < typename _Tp >
inline std : : vector < _Tp > remove_dups ( const std : : vector < _Tp > & src ) {
typedef typename std : : set < _Tp > : : const_iterator constSetIterator ;
typedef typename std : : vector < _Tp > : : const_iterator constVecIterator ;
std : : set < _Tp > set_elems ;
for ( constVecIterator it = src . begin ( ) ; it ! = src . end ( ) ; + + it )
set_elems . insert ( * it ) ;
std : : vector < _Tp > elems ;
for ( constSetIterator it = set_elems . begin ( ) ; it ! = set_elems . end ( ) ; + + it )
elems . push_back ( * it ) ;
return elems ;
}
static Mat argsort ( InputArray _src , bool ascending = true )
{
Mat src = _src . getMat ( ) ;
if ( src . rows ! = 1 & & src . cols ! = 1 ) {
String error_message = " Wrong shape of input matrix! Expected a matrix with one row or column. " ;
CV_Error ( Error : : StsBadArg , error_message ) ;
}
int flags = SORT_EVERY_ROW | ( ascending ? SORT_ASCENDING : SORT_DESCENDING ) ;
Mat sorted_indices ;
sortIdx ( src . reshape ( 1 , 1 ) , sorted_indices , flags ) ;
return sorted_indices ;
}
static Mat asRowMatrix ( InputArrayOfArrays src , int rtype , double alpha = 1 , double beta = 0 ) {
// make sure the input data is a vector of matrices or vector of vector
if ( src . kind ( ) ! = _InputArray : : STD_VECTOR_MAT & & src . kind ( ) ! = _InputArray : : STD_VECTOR_VECTOR ) {
String error_message = " The data is expected as InputArray::STD_VECTOR_MAT (a std::vector<Mat>) or _InputArray::STD_VECTOR_VECTOR (a std::vector< std::vector<...> >). " ;
CV_Error ( Error : : StsBadArg , error_message ) ;
}
// number of samples
size_t n = src . total ( ) ;
// return empty matrix if no matrices given
if ( n = = 0 )
return Mat ( ) ;
// dimensionality of (reshaped) samples
size_t d = src . getMat ( 0 ) . total ( ) ;
// create data matrix
Mat data ( ( int ) n , ( int ) d , rtype ) ;
// now copy data
for ( int i = 0 ; i < ( int ) n ; i + + ) {
// make sure data can be reshaped, throw exception if not!
if ( src . getMat ( i ) . total ( ) ! = d ) {
String error_message = format ( " Wrong number of elements in matrix #%d! Expected %d was %d. " , i , ( int ) d , ( int ) src . getMat ( i ) . total ( ) ) ;
CV_Error ( Error : : StsBadArg , error_message ) ;
}
// get a hold of the current row
Mat xi = data . row ( i ) ;
// make reshape happy by cloning for non-continuous matrices
if ( src . getMat ( i ) . isContinuous ( ) ) {
src . getMat ( i ) . reshape ( 1 , 1 ) . convertTo ( xi , rtype , alpha , beta ) ;
} else {
src . getMat ( i ) . clone ( ) . reshape ( 1 , 1 ) . convertTo ( xi , rtype , alpha , beta ) ;
}
}
return data ;
}
static void sortMatrixColumnsByIndices ( InputArray _src , InputArray _indices , OutputArray _dst ) {
if ( _indices . getMat ( ) . type ( ) ! = CV_32SC1 ) {
CV_Error ( Error : : StsUnsupportedFormat , " cv::sortColumnsByIndices only works on integer indices! " ) ;
}
Mat src = _src . getMat ( ) ;
std : : vector < int > indices = _indices . getMat ( ) ;
_dst . create ( src . rows , src . cols , src . type ( ) ) ;
Mat dst = _dst . getMat ( ) ;
for ( size_t idx = 0 ; idx < indices . size ( ) ; idx + + ) {
Mat originalCol = src . col ( indices [ idx ] ) ;
Mat sortedCol = dst . col ( ( int ) idx ) ;
originalCol . copyTo ( sortedCol ) ;
}
}
static Mat sortMatrixColumnsByIndices ( InputArray src , InputArray indices ) {
Mat dst ;
sortMatrixColumnsByIndices ( src , indices , dst ) ;
return dst ;
}
template < typename _Tp > static bool
isSymmetric_ ( InputArray src ) {
Mat _src = src . getMat ( ) ;
if ( _src . cols ! = _src . rows )
return false ;
for ( int i = 0 ; i < _src . rows ; i + + ) {
for ( int j = 0 ; j < _src . cols ; j + + ) {
_Tp a = _src . at < _Tp > ( i , j ) ;
_Tp b = _src . at < _Tp > ( j , i ) ;
if ( a ! = b ) {
return false ;
}
}
}
return true ;
}
template < typename _Tp > static bool
isSymmetric_ ( InputArray src , double eps ) {
Mat _src = src . getMat ( ) ;
if ( _src . cols ! = _src . rows )
return false ;
for ( int i = 0 ; i < _src . rows ; i + + ) {
for ( int j = 0 ; j < _src . cols ; j + + ) {
_Tp a = _src . at < _Tp > ( i , j ) ;
_Tp b = _src . at < _Tp > ( j , i ) ;
if ( std : : abs ( a - b ) > eps ) {
return false ;
}
}
}
return true ;
}
static bool isSymmetric ( InputArray src , double eps = 1e-16 )
{
Mat m = src . getMat ( ) ;
switch ( m . type ( ) ) {
case CV_8SC1 : return isSymmetric_ < char > ( m ) ; break ;
case CV_8UC1 :
return isSymmetric_ < unsigned char > ( m ) ; break ;
case CV_16SC1 :
return isSymmetric_ < short > ( m ) ; break ;
case CV_16UC1 :
return isSymmetric_ < unsigned short > ( m ) ; break ;
case CV_32SC1 :
return isSymmetric_ < int > ( m ) ; break ;
case CV_32FC1 :
return isSymmetric_ < float > ( m , eps ) ; break ;
case CV_64FC1 :
return isSymmetric_ < double > ( m , eps ) ; break ;
default :
break ;
}
return false ;
}
//------------------------------------------------------------------------------
// cv::subspaceProject
//------------------------------------------------------------------------------
Mat subspaceProject ( InputArray _W , InputArray _mean , InputArray _src ) {
// get data matrices
Mat W = _W . getMat ( ) ;
Mat mean = _mean . getMat ( ) ;
Mat src = _src . getMat ( ) ;
// get number of samples and dimension
int n = src . rows ;
int d = src . cols ;
// make sure the data has the correct shape
if ( W . rows ! = d ) {
String error_message = format ( " Wrong shapes for given matrices. Was size(src) = (%d,%d), size(W) = (%d,%d). " , src . rows , src . cols , W . rows , W . cols ) ;
CV_Error ( Error : : StsBadArg , error_message ) ;
}
// make sure mean is correct if not empty
if ( ! mean . empty ( ) & & ( mean . total ( ) ! = ( size_t ) d ) ) {
String error_message = format ( " Wrong mean shape for the given data matrix. Expected %d, but was %d. " , d , mean . total ( ) ) ;
CV_Error ( Error : : StsBadArg , error_message ) ;
}
// create temporary matrices
Mat X , Y ;
// make sure you operate on correct type
src . convertTo ( X , W . type ( ) ) ;
// safe to do, because of above assertion
if ( ! mean . empty ( ) ) {
for ( int i = 0 ; i < n ; i + + ) {
Mat r_i = X . row ( i ) ;
subtract ( r_i , mean . reshape ( 1 , 1 ) , r_i ) ;
}
}
// finally calculate projection as Y = (X-mean)*W
gemm ( X , W , 1.0 , Mat ( ) , 0.0 , Y ) ;
return Y ;
}
//------------------------------------------------------------------------------
// cv::subspaceReconstruct
//------------------------------------------------------------------------------
Mat subspaceReconstruct ( InputArray _W , InputArray _mean , InputArray _src )
{
// get data matrices
Mat W = _W . getMat ( ) ;
Mat mean = _mean . getMat ( ) ;
Mat src = _src . getMat ( ) ;
// get number of samples and dimension
int n = src . rows ;
int d = src . cols ;
// make sure the data has the correct shape
if ( W . cols ! = d ) {
String error_message = format ( " Wrong shapes for given matrices. Was size(src) = (%d,%d), size(W) = (%d,%d). " , src . rows , src . cols , W . rows , W . cols ) ;
CV_Error ( Error : : StsBadArg , error_message ) ;
}
// make sure mean is correct if not empty
if ( ! mean . empty ( ) & & ( mean . total ( ) ! = ( size_t ) W . rows ) ) {
String error_message = format ( " Wrong mean shape for the given eigenvector matrix. Expected %d, but was %d. " , W . cols , mean . total ( ) ) ;
CV_Error ( Error : : StsBadArg , error_message ) ;
}
// initalize temporary matrices
Mat X , Y ;
// copy data & make sure we are using the correct type
src . convertTo ( Y , W . type ( ) ) ;
// calculate the reconstruction
gemm ( Y , W , 1.0 , Mat ( ) , 0.0 , X , GEMM_2_T ) ;
// safe to do because of above assertion
if ( ! mean . empty ( ) ) {
for ( int i = 0 ; i < n ; i + + ) {
Mat r_i = X . row ( i ) ;
add ( r_i , mean . reshape ( 1 , 1 ) , r_i ) ;
}
}
return X ;
}
class EigenvalueDecomposition {
private :
// Holds the data dimension.
int n ;
// Stores real/imag part of a complex division.
double cdivr , cdivi ;
// Pointer to internal memory.
double * d , * e , * ort ;
double * * V , * * H ;
// Holds the computed eigenvalues.
Mat _eigenvalues ;
// Holds the computed eigenvectors.
Mat _eigenvectors ;
// Allocates memory.
template < typename _Tp >
_Tp * alloc_1d ( int m ) {
return new _Tp [ m ] ;
}
// Allocates memory.
template < typename _Tp >
_Tp * alloc_1d ( int m , _Tp val ) {
_Tp * arr = alloc_1d < _Tp > ( m ) ;
for ( int i = 0 ; i < m ; i + + )
arr [ i ] = val ;
return arr ;
}
// Allocates memory.
template < typename _Tp >
_Tp * * alloc_2d ( int m , int _n ) {
_Tp * * arr = new _Tp * [ m ] ;
for ( int i = 0 ; i < m ; i + + )
arr [ i ] = new _Tp [ _n ] ;
return arr ;
}
// Allocates memory.
template < typename _Tp >
_Tp * * alloc_2d ( int m , int _n , _Tp val ) {
_Tp * * arr = alloc_2d < _Tp > ( m , _n ) ;
for ( int i = 0 ; i < m ; i + + ) {
for ( int j = 0 ; j < _n ; j + + ) {
arr [ i ] [ j ] = val ;
}
}
return arr ;
}
void cdiv ( double xr , double xi , double yr , double yi ) {
double r , dv ;
if ( std : : abs ( yr ) > std : : abs ( yi ) ) {
r = yi / yr ;
dv = yr + r * yi ;
cdivr = ( xr + r * xi ) / dv ;
cdivi = ( xi - r * xr ) / dv ;
} else {
r = yr / yi ;
dv = yi + r * yr ;
cdivr = ( r * xr + xi ) / dv ;
cdivi = ( r * xi - xr ) / dv ;
}
}
// Nonsymmetric reduction from Hessenberg to real Schur form.
void hqr2 ( ) {
// This is derived from the Algol procedure hqr2,
// by Martin and Wilkinson, Handbook for Auto. Comp.,
// Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
// Initialize
int nn = this - > n ;
int n1 = nn - 1 ;
int low = 0 ;
int high = nn - 1 ;
double eps = std : : pow ( 2.0 , - 52.0 ) ;
double exshift = 0.0 ;
double p = 0 , q = 0 , r = 0 , s = 0 , z = 0 , t , w , x , y ;
// Store roots isolated by balanc and compute matrix norm
double norm = 0.0 ;
for ( int i = 0 ; i < nn ; i + + ) {
if ( i < low | | i > high ) {
d [ i ] = H [ i ] [ i ] ;
e [ i ] = 0.0 ;
}
for ( int j = std : : max ( i - 1 , 0 ) ; j < nn ; j + + ) {
norm = norm + std : : abs ( H [ i ] [ j ] ) ;
}
}
// Outer loop over eigenvalue index
int iter = 0 ;
while ( n1 > = low ) {
// Look for single small sub-diagonal element
int l = n1 ;
while ( l > low ) {
s = std : : abs ( H [ l - 1 ] [ l - 1 ] ) + std : : abs ( H [ l ] [ l ] ) ;
if ( s = = 0.0 ) {
s = norm ;
}
if ( std : : abs ( H [ l ] [ l - 1 ] ) < eps * s ) {
break ;
}
l - - ;
}
// Check for convergence
// One root found
if ( l = = n1 ) {
H [ n1 ] [ n1 ] = H [ n1 ] [ n1 ] + exshift ;
d [ n1 ] = H [ n1 ] [ n1 ] ;
e [ n1 ] = 0.0 ;
n1 - - ;
iter = 0 ;
// Two roots found
} else if ( l = = n1 - 1 ) {
w = H [ n1 ] [ n1 - 1 ] * H [ n1 - 1 ] [ n1 ] ;
p = ( H [ n1 - 1 ] [ n1 - 1 ] - H [ n1 ] [ n1 ] ) / 2.0 ;
q = p * p + w ;
z = std : : sqrt ( std : : abs ( q ) ) ;
H [ n1 ] [ n1 ] = H [ n1 ] [ n1 ] + exshift ;
H [ n1 - 1 ] [ n1 - 1 ] = H [ n1 - 1 ] [ n1 - 1 ] + exshift ;
x = H [ n1 ] [ n1 ] ;
// Real pair
if ( q > = 0 ) {
if ( p > = 0 ) {
z = p + z ;
} else {
z = p - z ;
}
d [ n1 - 1 ] = x + z ;
d [ n1 ] = d [ n1 - 1 ] ;
if ( z ! = 0.0 ) {
d [ n1 ] = x - w / z ;
}
e [ n1 - 1 ] = 0.0 ;
e [ n1 ] = 0.0 ;
x = H [ n1 ] [ n1 - 1 ] ;
s = std : : abs ( x ) + std : : abs ( z ) ;
p = x / s ;
q = z / s ;
r = std : : sqrt ( p * p + q * q ) ;
p = p / r ;
q = q / r ;
// Row modification
for ( int j = n1 - 1 ; j < nn ; j + + ) {
z = H [ n1 - 1 ] [ j ] ;
H [ n1 - 1 ] [ j ] = q * z + p * H [ n1 ] [ j ] ;
H [ n1 ] [ j ] = q * H [ n1 ] [ j ] - p * z ;
}
// Column modification
for ( int i = 0 ; i < = n1 ; i + + ) {
z = H [ i ] [ n1 - 1 ] ;
H [ i ] [ n1 - 1 ] = q * z + p * H [ i ] [ n1 ] ;
H [ i ] [ n1 ] = q * H [ i ] [ n1 ] - p * z ;
}
// Accumulate transformations
for ( int i = low ; i < = high ; i + + ) {
z = V [ i ] [ n1 - 1 ] ;
V [ i ] [ n1 - 1 ] = q * z + p * V [ i ] [ n1 ] ;
V [ i ] [ n1 ] = q * V [ i ] [ n1 ] - p * z ;
}
// Complex pair
} else {
d [ n1 - 1 ] = x + p ;
d [ n1 ] = x + p ;
e [ n1 - 1 ] = z ;
e [ n1 ] = - z ;
}
n1 = n1 - 2 ;
iter = 0 ;
// No convergence yet
} else {
// Form shift
x = H [ n1 ] [ n1 ] ;
y = 0.0 ;
w = 0.0 ;
if ( l < n1 ) {
y = H [ n1 - 1 ] [ n1 - 1 ] ;
w = H [ n1 ] [ n1 - 1 ] * H [ n1 - 1 ] [ n1 ] ;
}
// Wilkinson's original ad hoc shift
if ( iter = = 10 ) {
exshift + = x ;
for ( int i = low ; i < = n1 ; i + + ) {
H [ i ] [ i ] - = x ;
}
s = std : : abs ( H [ n1 ] [ n1 - 1 ] ) + std : : abs ( H [ n1 - 1 ] [ n1 - 2 ] ) ;
x = y = 0.75 * s ;
w = - 0.4375 * s * s ;
}
// MATLAB's new ad hoc shift
if ( iter = = 30 ) {
s = ( y - x ) / 2.0 ;
s = s * s + w ;
if ( s > 0 ) {
s = std : : sqrt ( s ) ;
if ( y < x ) {
s = - s ;
}
s = x - w / ( ( y - x ) / 2.0 + s ) ;
for ( int i = low ; i < = n1 ; i + + ) {
H [ i ] [ i ] - = s ;
}
exshift + = s ;
x = y = w = 0.964 ;
}
}
iter = iter + 1 ; // (Could check iteration count here.)
// Look for two consecutive small sub-diagonal elements
int m = n1 - 2 ;
while ( m > = l ) {
z = H [ m ] [ m ] ;
r = x - z ;
s = y - z ;
p = ( r * s - w ) / H [ m + 1 ] [ m ] + H [ m ] [ m + 1 ] ;
q = H [ m + 1 ] [ m + 1 ] - z - r - s ;
r = H [ m + 2 ] [ m + 1 ] ;
s = std : : abs ( p ) + std : : abs ( q ) + std : : abs ( r ) ;
p = p / s ;
q = q / s ;
r = r / s ;
if ( m = = l ) {
break ;
}
if ( std : : abs ( H [ m ] [ m - 1 ] ) * ( std : : abs ( q ) + std : : abs ( r ) ) < eps * ( std : : abs ( p )
* ( std : : abs ( H [ m - 1 ] [ m - 1 ] ) + std : : abs ( z ) + std : : abs (
H [ m + 1 ] [ m + 1 ] ) ) ) ) {
break ;
}
m - - ;
}
for ( int i = m + 2 ; i < = n1 ; i + + ) {
H [ i ] [ i - 2 ] = 0.0 ;
if ( i > m + 2 ) {
H [ i ] [ i - 3 ] = 0.0 ;
}
}
// Double QR step involving rows l:n and columns m:n
for ( int k = m ; k < = n1 - 1 ; k + + ) {
bool notlast = ( k ! = n1 - 1 ) ;
if ( k ! = m ) {
p = H [ k ] [ k - 1 ] ;
q = H [ k + 1 ] [ k - 1 ] ;
r = ( notlast ? H [ k + 2 ] [ k - 1 ] : 0.0 ) ;
x = std : : abs ( p ) + std : : abs ( q ) + std : : abs ( r ) ;
if ( x ! = 0.0 ) {
p = p / x ;
q = q / x ;
r = r / x ;
}
}
if ( x = = 0.0 ) {
break ;
}
s = std : : sqrt ( p * p + q * q + r * r ) ;
if ( p < 0 ) {
s = - s ;
}
if ( s ! = 0 ) {
if ( k ! = m ) {
H [ k ] [ k - 1 ] = - s * x ;
} else if ( l ! = m ) {
H [ k ] [ k - 1 ] = - H [ k ] [ k - 1 ] ;
}
p = p + s ;
x = p / s ;
y = q / s ;
z = r / s ;
q = q / p ;
r = r / p ;
// Row modification
for ( int j = k ; j < nn ; j + + ) {
p = H [ k ] [ j ] + q * H [ k + 1 ] [ j ] ;
if ( notlast ) {
p = p + r * H [ k + 2 ] [ j ] ;
H [ k + 2 ] [ j ] = H [ k + 2 ] [ j ] - p * z ;
}
H [ k ] [ j ] = H [ k ] [ j ] - p * x ;
H [ k + 1 ] [ j ] = H [ k + 1 ] [ j ] - p * y ;
}
// Column modification
for ( int i = 0 ; i < = std : : min ( n1 , k + 3 ) ; i + + ) {
p = x * H [ i ] [ k ] + y * H [ i ] [ k + 1 ] ;
if ( notlast ) {
p = p + z * H [ i ] [ k + 2 ] ;
H [ i ] [ k + 2 ] = H [ i ] [ k + 2 ] - p * r ;
}
H [ i ] [ k ] = H [ i ] [ k ] - p ;
H [ i ] [ k + 1 ] = H [ i ] [ k + 1 ] - p * q ;
}
// Accumulate transformations
for ( int i = low ; i < = high ; i + + ) {
p = x * V [ i ] [ k ] + y * V [ i ] [ k + 1 ] ;
if ( notlast ) {
p = p + z * V [ i ] [ k + 2 ] ;
V [ i ] [ k + 2 ] = V [ i ] [ k + 2 ] - p * r ;
}
V [ i ] [ k ] = V [ i ] [ k ] - p ;
V [ i ] [ k + 1 ] = V [ i ] [ k + 1 ] - p * q ;
}
} // (s != 0)
} // k loop
} // check convergence
} // while (n1 >= low)
// Backsubstitute to find vectors of upper triangular form
if ( norm = = 0.0 ) {
return ;
}
for ( n1 = nn - 1 ; n1 > = 0 ; n1 - - ) {
p = d [ n1 ] ;
q = e [ n1 ] ;
// Real vector
if ( q = = 0 ) {
int l = n1 ;
H [ n1 ] [ n1 ] = 1.0 ;
for ( int i = n1 - 1 ; i > = 0 ; i - - ) {
w = H [ i ] [ i ] - p ;
r = 0.0 ;
for ( int j = l ; j < = n1 ; j + + ) {
r = r + H [ i ] [ j ] * H [ j ] [ n1 ] ;
}
if ( e [ i ] < 0.0 ) {
z = w ;
s = r ;
} else {
l = i ;
if ( e [ i ] = = 0.0 ) {
if ( w ! = 0.0 ) {
H [ i ] [ n1 ] = - r / w ;
} else {
H [ i ] [ n1 ] = - r / ( eps * norm ) ;
}
// Solve real equations
} else {
x = H [ i ] [ i + 1 ] ;
y = H [ i + 1 ] [ i ] ;
q = ( d [ i ] - p ) * ( d [ i ] - p ) + e [ i ] * e [ i ] ;
t = ( x * s - z * r ) / q ;
H [ i ] [ n1 ] = t ;
if ( std : : abs ( x ) > std : : abs ( z ) ) {
H [ i + 1 ] [ n1 ] = ( - r - w * t ) / x ;
} else {
H [ i + 1 ] [ n1 ] = ( - s - y * t ) / z ;
}
}
// Overflow control
t = std : : abs ( H [ i ] [ n1 ] ) ;
if ( ( eps * t ) * t > 1 ) {
for ( int j = i ; j < = n1 ; j + + ) {
H [ j ] [ n1 ] = H [ j ] [ n1 ] / t ;
}
}
}
}
// Complex vector
} else if ( q < 0 ) {
int l = n1 - 1 ;
// Last vector component imaginary so matrix is triangular
if ( std : : abs ( H [ n1 ] [ n1 - 1 ] ) > std : : abs ( H [ n1 - 1 ] [ n1 ] ) ) {
H [ n1 - 1 ] [ n1 - 1 ] = q / H [ n1 ] [ n1 - 1 ] ;
H [ n1 - 1 ] [ n1 ] = - ( H [ n1 ] [ n1 ] - p ) / H [ n1 ] [ n1 - 1 ] ;
} else {
cdiv ( 0.0 , - H [ n1 - 1 ] [ n1 ] , H [ n1 - 1 ] [ n1 - 1 ] - p , q ) ;
H [ n1 - 1 ] [ n1 - 1 ] = cdivr ;
H [ n1 - 1 ] [ n1 ] = cdivi ;
}
H [ n1 ] [ n1 - 1 ] = 0.0 ;
H [ n1 ] [ n1 ] = 1.0 ;
for ( int i = n1 - 2 ; i > = 0 ; i - - ) {
double ra , sa , vr , vi ;
ra = 0.0 ;
sa = 0.0 ;
for ( int j = l ; j < = n1 ; j + + ) {
ra = ra + H [ i ] [ j ] * H [ j ] [ n1 - 1 ] ;
sa = sa + H [ i ] [ j ] * H [ j ] [ n1 ] ;
}
w = H [ i ] [ i ] - p ;
if ( e [ i ] < 0.0 ) {
z = w ;
r = ra ;
s = sa ;
} else {
l = i ;
if ( e [ i ] = = 0 ) {
cdiv ( - ra , - sa , w , q ) ;
H [ i ] [ n1 - 1 ] = cdivr ;
H [ i ] [ n1 ] = cdivi ;
} else {
// Solve complex equations
x = H [ i ] [ i + 1 ] ;
y = H [ i + 1 ] [ i ] ;
vr = ( d [ i ] - p ) * ( d [ i ] - p ) + e [ i ] * e [ i ] - q * q ;
vi = ( d [ i ] - p ) * 2.0 * q ;
if ( vr = = 0.0 & & vi = = 0.0 ) {
vr = eps * norm * ( std : : abs ( w ) + std : : abs ( q ) + std : : abs ( x )
+ std : : abs ( y ) + std : : abs ( z ) ) ;
}
cdiv ( x * r - z * ra + q * sa ,
x * s - z * sa - q * ra , vr , vi ) ;
H [ i ] [ n1 - 1 ] = cdivr ;
H [ i ] [ n1 ] = cdivi ;
if ( std : : abs ( x ) > ( std : : abs ( z ) + std : : abs ( q ) ) ) {
H [ i + 1 ] [ n1 - 1 ] = ( - ra - w * H [ i ] [ n1 - 1 ] + q
* H [ i ] [ n1 ] ) / x ;
H [ i + 1 ] [ n1 ] = ( - sa - w * H [ i ] [ n1 ] - q * H [ i ] [ n1
- 1 ] ) / x ;
} else {
cdiv ( - r - y * H [ i ] [ n1 - 1 ] , - s - y * H [ i ] [ n1 ] , z ,
q ) ;
H [ i + 1 ] [ n1 - 1 ] = cdivr ;
H [ i + 1 ] [ n1 ] = cdivi ;
}
}
// Overflow control
t = std : : max ( std : : abs ( H [ i ] [ n1 - 1 ] ) , std : : abs ( H [ i ] [ n1 ] ) ) ;
if ( ( eps * t ) * t > 1 ) {
for ( int j = i ; j < = n1 ; j + + ) {
H [ j ] [ n1 - 1 ] = H [ j ] [ n1 - 1 ] / t ;
H [ j ] [ n1 ] = H [ j ] [ n1 ] / t ;
}
}
}
}
}
}
// Vectors of isolated roots
for ( int i = 0 ; i < nn ; i + + ) {
if ( i < low | | i > high ) {
for ( int j = i ; j < nn ; j + + ) {
V [ i ] [ j ] = H [ i ] [ j ] ;
}
}
}
// Back transformation to get eigenvectors of original matrix
for ( int j = nn - 1 ; j > = low ; j - - ) {
for ( int i = low ; i < = high ; i + + ) {
z = 0.0 ;
for ( int k = low ; k < = std : : min ( j , high ) ; k + + ) {
z = z + V [ i ] [ k ] * H [ k ] [ j ] ;
}
V [ i ] [ j ] = z ;
}
}
}
// Nonsymmetric reduction to Hessenberg form.
void orthes ( ) {
// This is derived from the Algol procedures orthes and ortran,
// by Martin and Wilkinson, Handbook for Auto. Comp.,
// Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutines in EISPACK.
int low = 0 ;
int high = n - 1 ;
for ( int m = low + 1 ; m < = high - 1 ; m + + ) {
// Scale column.
double scale = 0.0 ;
for ( int i = m ; i < = high ; i + + ) {
scale = scale + std : : abs ( H [ i ] [ m - 1 ] ) ;
}
if ( scale ! = 0.0 ) {
// Compute Householder transformation.
double h = 0.0 ;
for ( int i = high ; i > = m ; i - - ) {
ort [ i ] = H [ i ] [ m - 1 ] / scale ;
h + = ort [ i ] * ort [ i ] ;
}
double g = std : : sqrt ( h ) ;
if ( ort [ m ] > 0 ) {
g = - g ;
}
h = h - ort [ m ] * g ;
ort [ m ] = ort [ m ] - g ;
// Apply Householder similarity transformation
// H = (I-u*u'/h)*H*(I-u*u')/h)
for ( int j = m ; j < n ; j + + ) {
double f = 0.0 ;
for ( int i = high ; i > = m ; i - - ) {
f + = ort [ i ] * H [ i ] [ j ] ;
}
f = f / h ;
for ( int i = m ; i < = high ; i + + ) {
H [ i ] [ j ] - = f * ort [ i ] ;
}
}
for ( int i = 0 ; i < = high ; i + + ) {
double f = 0.0 ;
for ( int j = high ; j > = m ; j - - ) {
f + = ort [ j ] * H [ i ] [ j ] ;
}
f = f / h ;
for ( int j = m ; j < = high ; j + + ) {
H [ i ] [ j ] - = f * ort [ j ] ;
}
}
ort [ m ] = scale * ort [ m ] ;
H [ m ] [ m - 1 ] = scale * g ;
}
}
// Accumulate transformations (Algol's ortran).
for ( int i = 0 ; i < n ; i + + ) {
for ( int j = 0 ; j < n ; j + + ) {
V [ i ] [ j ] = ( i = = j ? 1.0 : 0.0 ) ;
}
}
for ( int m = high - 1 ; m > = low + 1 ; m - - ) {
if ( H [ m ] [ m - 1 ] ! = 0.0 ) {
for ( int i = m + 1 ; i < = high ; i + + ) {
ort [ i ] = H [ i ] [ m - 1 ] ;
}
for ( int j = m ; j < = high ; j + + ) {
double g = 0.0 ;
for ( int i = m ; i < = high ; i + + ) {
g + = ort [ i ] * V [ i ] [ j ] ;
}
// Double division avoids possible underflow
g = ( g / ort [ m ] ) / H [ m ] [ m - 1 ] ;
for ( int i = m ; i < = high ; i + + ) {
V [ i ] [ j ] + = g * ort [ i ] ;
}
}
}
}
}
// Releases all internal working memory.
void release ( ) {
// releases the working data
delete [ ] d ;
delete [ ] e ;
delete [ ] ort ;
for ( int i = 0 ; i < n ; i + + ) {
delete [ ] H [ i ] ;
delete [ ] V [ i ] ;
}
delete [ ] H ;
delete [ ] V ;
}
// Computes the Eigenvalue Decomposition for a matrix given in H.
void compute ( ) {
// Allocate memory for the working data.
V = alloc_2d < double > ( n , n , 0.0 ) ;
d = alloc_1d < double > ( n ) ;
e = alloc_1d < double > ( n ) ;
ort = alloc_1d < double > ( n ) ;
// Reduce to Hessenberg form.
orthes ( ) ;
// Reduce Hessenberg to real Schur form.
hqr2 ( ) ;
// Copy eigenvalues to OpenCV Matrix.
_eigenvalues . create ( 1 , n , CV_64FC1 ) ;
for ( int i = 0 ; i < n ; i + + ) {
_eigenvalues . at < double > ( 0 , i ) = d [ i ] ;
}
// Copy eigenvectors to OpenCV Matrix.
_eigenvectors . create ( n , n , CV_64FC1 ) ;
for ( int i = 0 ; i < n ; i + + )
for ( int j = 0 ; j < n ; j + + )
_eigenvectors . at < double > ( i , j ) = V [ i ] [ j ] ;
// Deallocate the memory by releasing all internal working data.
release ( ) ;
}
public :
EigenvalueDecomposition ( )
: n ( 0 ) { }
// Initializes & computes the Eigenvalue Decomposition for a general matrix
// given in src. This function is a port of the EigenvalueSolver in JAMA,
// which has been released to public domain by The MathWorks and the
// National Institute of Standards and Technology (NIST).
EigenvalueDecomposition ( InputArray src ) {
compute ( src ) ;
}
// This function computes the Eigenvalue Decomposition for a general matrix
// given in src. This function is a port of the EigenvalueSolver in JAMA,
// which has been released to public domain by The MathWorks and the
// National Institute of Standards and Technology (NIST).
void compute ( InputArray src )
{
if ( isSymmetric ( src ) ) {
// Fall back to OpenCV for a symmetric matrix!
cv : : eigen ( src , _eigenvalues , _eigenvectors ) ;
} else {
Mat tmp ;
// Convert the given input matrix to double. Is there any way to
// prevent allocating the temporary memory? Only used for copying
// into working memory and deallocated after.
src . getMat ( ) . convertTo ( tmp , CV_64FC1 ) ;
// Get dimension of the matrix.
this - > n = tmp . cols ;
// Allocate the matrix data to work on.
this - > H = alloc_2d < double > ( n , n ) ;
// Now safely copy the data.
for ( int i = 0 ; i < tmp . rows ; i + + ) {
for ( int j = 0 ; j < tmp . cols ; j + + ) {
this - > H [ i ] [ j ] = tmp . at < double > ( i , j ) ;
}
}
// Deallocates the temporary matrix before computing.
tmp . release ( ) ;
// Performs the eigenvalue decomposition of H.
compute ( ) ;
}
}
~ EigenvalueDecomposition ( ) { }
// Returns the eigenvalues of the Eigenvalue Decomposition.
Mat eigenvalues ( ) { return _eigenvalues ; }
// Returns the eigenvectors of the Eigenvalue Decomposition.
Mat eigenvectors ( ) { return _eigenvectors ; }
} ;
//------------------------------------------------------------------------------
// Linear Discriminant Analysis implementation
//------------------------------------------------------------------------------
void LDA : : save ( const String & filename ) const {
FileStorage fs ( filename , FileStorage : : WRITE ) ;
if ( ! fs . isOpened ( ) ) {
CV_Error ( Error : : StsError , " File can't be opened for writing! " ) ;
}
this - > save ( fs ) ;
fs . release ( ) ;
}
// Deserializes this object from a given filename.
void LDA : : load ( const String & filename ) {
FileStorage fs ( filename , FileStorage : : READ ) ;
if ( ! fs . isOpened ( ) )
CV_Error ( Error : : StsError , " File can't be opened for writing! " ) ;
this - > load ( fs ) ;
fs . release ( ) ;
}
// Serializes this object to a given FileStorage.
void LDA : : save ( FileStorage & fs ) const {
// write matrices
fs < < " num_components " < < _num_components ;
fs < < " eigenvalues " < < _eigenvalues ;
fs < < " eigenvectors " < < _eigenvectors ;
}
// Deserializes this object from a given FileStorage.
void LDA : : load ( const FileStorage & fs ) {
//read matrices
fs [ " num_components " ] > > _num_components ;
fs [ " eigenvalues " ] > > _eigenvalues ;
fs [ " eigenvectors " ] > > _eigenvectors ;
}
void LDA : : lda ( InputArrayOfArrays _src , InputArray _lbls ) {
// get data
Mat src = _src . getMat ( ) ;
std : : vector < int > labels ;
// safely copy the labels
{
Mat tmp = _lbls . getMat ( ) ;
for ( unsigned int i = 0 ; i < tmp . total ( ) ; i + + ) {
labels . push_back ( tmp . at < int > ( i ) ) ;
}
}
// turn into row sampled matrix
Mat data ;
// ensure working matrix is double precision
src . convertTo ( data , CV_64FC1 ) ;
// maps the labels, so they're ascending: [0,1,...,C]
std : : vector < int > mapped_labels ( labels . size ( ) ) ;
std : : vector < int > num2label = remove_dups ( labels ) ;
std : : map < int , int > label2num ;
for ( int i = 0 ; i < ( int ) num2label . size ( ) ; i + + )
label2num [ num2label [ i ] ] = i ;
for ( size_t i = 0 ; i < labels . size ( ) ; i + + )
mapped_labels [ i ] = label2num [ labels [ i ] ] ;
// get sample size, dimension
int N = data . rows ;
int D = data . cols ;
// number of unique labels
int C = ( int ) num2label . size ( ) ;
// we can't do a LDA on one class, what do you
// want to separate from each other then?
if ( C = = 1 ) {
String error_message = " At least two classes are needed to perform a LDA. Reason: Only one class was given! " ;
CV_Error ( Error : : StsBadArg , error_message ) ;
}
// throw error if less labels, than samples
if ( labels . size ( ) ! = static_cast < size_t > ( N ) ) {
String error_message = format ( " The number of samples must equal the number of labels. Given %d labels, %d samples. " , labels . size ( ) , N ) ;
CV_Error ( Error : : StsBadArg , error_message ) ;
}
// warn if within-classes scatter matrix becomes singular
if ( N < D ) {
std : : cout < < " Warning: Less observations than feature dimension given! "
< < " Computation will probably fail. "
< < std : : endl ;
}
// clip number of components to be a valid number
if ( ( _num_components < = 0 ) | | ( _num_components > ( C - 1 ) ) ) {
_num_components = ( C - 1 ) ;
}
// holds the mean over all classes
Mat meanTotal = Mat : : zeros ( 1 , D , data . type ( ) ) ;
// holds the mean for each class
std : : vector < Mat > meanClass ( C ) ;
std : : vector < int > numClass ( C ) ;
// initialize
for ( int i = 0 ; i < C ; i + + ) {
numClass [ i ] = 0 ;
meanClass [ i ] = Mat : : zeros ( 1 , D , data . type ( ) ) ; //! Dx1 image vector
}
// calculate sums
for ( int i = 0 ; i < N ; i + + ) {
Mat instance = data . row ( i ) ;
int classIdx = mapped_labels [ i ] ;
add ( meanTotal , instance , meanTotal ) ;
add ( meanClass [ classIdx ] , instance , meanClass [ classIdx ] ) ;
numClass [ classIdx ] + + ;
}
// calculate total mean
meanTotal . convertTo ( meanTotal , meanTotal . type ( ) , 1.0 / static_cast < double > ( N ) ) ;
// calculate class means
for ( int i = 0 ; i < C ; i + + ) {
meanClass [ i ] . convertTo ( meanClass [ i ] , meanClass [ i ] . type ( ) , 1.0 / static_cast < double > ( numClass [ i ] ) ) ;
}
// subtract class means
for ( int i = 0 ; i < N ; i + + ) {
int classIdx = mapped_labels [ i ] ;
Mat instance = data . row ( i ) ;
subtract ( instance , meanClass [ classIdx ] , instance ) ;
}
// calculate within-classes scatter
Mat Sw = Mat : : zeros ( D , D , data . type ( ) ) ;
mulTransposed ( data , Sw , true ) ;
// calculate between-classes scatter
Mat Sb = Mat : : zeros ( D , D , data . type ( ) ) ;
for ( int i = 0 ; i < C ; i + + ) {
Mat tmp ;
subtract ( meanClass [ i ] , meanTotal , tmp ) ;
mulTransposed ( tmp , tmp , true ) ;
add ( Sb , tmp , Sb ) ;
}
// invert Sw
Mat Swi = Sw . inv ( ) ;
// M = inv(Sw)*Sb
Mat M ;
gemm ( Swi , Sb , 1.0 , Mat ( ) , 0.0 , M ) ;
EigenvalueDecomposition es ( M ) ;
_eigenvalues = es . eigenvalues ( ) ;
_eigenvectors = es . eigenvectors ( ) ;
// reshape eigenvalues, so they are stored by column
_eigenvalues = _eigenvalues . reshape ( 1 , 1 ) ;
// get sorted indices descending by their eigenvalue
std : : vector < int > sorted_indices = argsort ( _eigenvalues , false ) ;
// now sort eigenvalues and eigenvectors accordingly
_eigenvalues = sortMatrixColumnsByIndices ( _eigenvalues , sorted_indices ) ;
_eigenvectors = sortMatrixColumnsByIndices ( _eigenvectors , sorted_indices ) ;
// and now take only the num_components and we're out!
_eigenvalues = Mat ( _eigenvalues , Range : : all ( ) , Range ( 0 , _num_components ) ) ;
_eigenvectors = Mat ( _eigenvectors , Range : : all ( ) , Range ( 0 , _num_components ) ) ;
}
void LDA : : compute ( InputArrayOfArrays _src , InputArray _lbls ) {
switch ( _src . kind ( ) ) {
case _InputArray : : STD_VECTOR_MAT :
lda ( asRowMatrix ( _src , CV_64FC1 ) , _lbls ) ;
break ;
case _InputArray : : MAT :
lda ( _src . getMat ( ) , _lbls ) ;
break ;
default :
String error_message = format ( " InputArray Datatype %d is not supported. " , _src . kind ( ) ) ;
CV_Error ( Error : : StsBadArg , error_message ) ;
break ;
}
}
// Projects samples into the LDA subspace.
Mat LDA : : project ( InputArray src ) {
return subspaceProject ( _eigenvectors , Mat ( ) , _dataAsRow ? src : src . getMat ( ) . t ( ) ) ;
}
// Reconstructs projections from the LDA subspace.
Mat LDA : : reconstruct ( InputArray src ) {
return subspaceReconstruct ( _eigenvectors , Mat ( ) , _dataAsRow ? src : src . getMat ( ) . t ( ) ) ;
}
}