Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

384 lines
13 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_ML_PRECOMP_HPP__
#define __OPENCV_ML_PRECOMP_HPP__
#include "opencv2/core.hpp"
#include "opencv2/ml.hpp"
#include "opencv2/core/core_c.h"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/private.hpp"
#include <assert.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <vector>
/****************************************************************************************\
* Main struct definitions *
\****************************************************************************************/
/* log(2*PI) */
#define CV_LOG2PI (1.8378770664093454835606594728112)
namespace cv
{
namespace ml
{
using std::vector;
#define CV_DTREE_CAT_DIR(idx,subset) \
(2*((subset[(idx)>>5]&(1 << ((idx) & 31)))==0)-1)
template<typename _Tp> struct cmp_lt_idx
{
cmp_lt_idx(const _Tp* _arr) : arr(_arr) {}
bool operator ()(int a, int b) const { return arr[a] < arr[b]; }
const _Tp* arr;
};
template<typename _Tp> struct cmp_lt_ptr
{
cmp_lt_ptr() {}
bool operator ()(const _Tp* a, const _Tp* b) const { return *a < *b; }
};
static inline void setRangeVector(std::vector<int>& vec, int n)
{
vec.resize(n);
for( int i = 0; i < n; i++ )
vec[i] = i;
}
static inline void writeTermCrit(FileStorage& fs, const TermCriteria& termCrit)
{
if( (termCrit.type & TermCriteria::EPS) != 0 )
fs << "epsilon" << termCrit.epsilon;
if( (termCrit.type & TermCriteria::COUNT) != 0 )
fs << "iterations" << termCrit.maxCount;
}
static inline TermCriteria readTermCrit(const FileNode& fn)
{
TermCriteria termCrit;
double epsilon = (double)fn["epsilon"];
if( epsilon > 0 )
{
termCrit.type |= TermCriteria::EPS;
termCrit.epsilon = epsilon;
}
int iters = (int)fn["iterations"];
if( iters > 0 )
{
termCrit.type |= TermCriteria::COUNT;
termCrit.maxCount = iters;
}
return termCrit;
}
struct TreeParams
{
TreeParams();
TreeParams( int maxDepth, int minSampleCount,
double regressionAccuracy, bool useSurrogates,
int maxCategories, int CVFolds,
bool use1SERule, bool truncatePrunedTree,
const Mat& priors );
inline void setMaxCategories(int val)
{
if( val < 2 )
CV_Error( CV_StsOutOfRange, "max_categories should be >= 2" );
maxCategories = std::min(val, 15 );
}
inline void setMaxDepth(int val)
{
if( val < 0 )
CV_Error( CV_StsOutOfRange, "max_depth should be >= 0" );
maxDepth = std::min( val, 25 );
}
inline void setMinSampleCount(int val)
{
minSampleCount = std::max(val, 1);
}
inline void setCVFolds(int val)
{
if( val < 0 )
CV_Error( CV_StsOutOfRange,
"params.CVFolds should be =0 (the tree is not pruned) "
"or n>0 (tree is pruned using n-fold cross-validation)" );
if( val == 1 )
val = 0;
CVFolds = val;
}
inline void setRegressionAccuracy(float val)
{
if( val < 0 )
CV_Error( CV_StsOutOfRange, "params.regression_accuracy should be >= 0" );
regressionAccuracy = val;
}
inline int getMaxCategories() const { return maxCategories; }
inline int getMaxDepth() const { return maxDepth; }
inline int getMinSampleCount() const { return minSampleCount; }
inline int getCVFolds() const { return CVFolds; }
inline float getRegressionAccuracy() const { return regressionAccuracy; }
CV_IMPL_PROPERTY(bool, UseSurrogates, useSurrogates)
CV_IMPL_PROPERTY(bool, Use1SERule, use1SERule)
CV_IMPL_PROPERTY(bool, TruncatePrunedTree, truncatePrunedTree)
CV_IMPL_PROPERTY_S(cv::Mat, Priors, priors)
public:
bool useSurrogates;
bool use1SERule;
bool truncatePrunedTree;
Mat priors;
protected:
int maxCategories;
int maxDepth;
int minSampleCount;
int CVFolds;
float regressionAccuracy;
};
struct RTreeParams
{
RTreeParams();
RTreeParams(bool calcVarImportance, int nactiveVars, TermCriteria termCrit );
bool calcVarImportance;
int nactiveVars;
TermCriteria termCrit;
};
struct BoostTreeParams
{
BoostTreeParams();
BoostTreeParams(int boostType, int weakCount, double weightTrimRate);
int boostType;
int weakCount;
double weightTrimRate;
};
class DTreesImpl : public DTrees
{
public:
struct WNode
{
WNode()
{
class_idx = sample_count = depth = complexity = 0;
parent = left = right = split = defaultDir = -1;
Tn = INT_MAX;
value = maxlr = alpha = node_risk = tree_risk = tree_error = 0.;
}
int class_idx;
double Tn;
double value;
int parent;
int left;
int right;
int defaultDir;
int split;
int sample_count;
int depth;
double maxlr;
// global pruning data
int complexity;
double alpha;
double node_risk, tree_risk, tree_error;
};
struct WSplit
{
WSplit()
{
varIdx = next = 0;
inversed = false;
quality = c = 0.f;
subsetOfs = -1;
}
int varIdx;
bool inversed;
float quality;
int next;
float c;
int subsetOfs;
};
struct WorkData
{
WorkData(const Ptr<TrainData>& _data);
Ptr<TrainData> data;
vector<WNode> wnodes;
vector<WSplit> wsplits;
vector<int> wsubsets;
vector<double> cv_Tn;
vector<double> cv_node_risk;
vector<double> cv_node_error;
vector<int> cv_labels;
vector<double> sample_weights;
vector<int> cat_responses;
vector<double> ord_responses;
vector<int> sidx;
int maxSubsetSize;
};
CV_WRAP_SAME_PROPERTY(int, MaxCategories, params)
CV_WRAP_SAME_PROPERTY(int, MaxDepth, params)
CV_WRAP_SAME_PROPERTY(int, MinSampleCount, params)
CV_WRAP_SAME_PROPERTY(int, CVFolds, params)
CV_WRAP_SAME_PROPERTY(bool, UseSurrogates, params)
CV_WRAP_SAME_PROPERTY(bool, Use1SERule, params)
CV_WRAP_SAME_PROPERTY(bool, TruncatePrunedTree, params)
CV_WRAP_SAME_PROPERTY(float, RegressionAccuracy, params)
CV_WRAP_SAME_PROPERTY_S(cv::Mat, Priors, params)
DTreesImpl();
virtual ~DTreesImpl();
virtual void clear();
String getDefaultModelName() const { return "opencv_ml_dtree"; }
bool isTrained() const { return !roots.empty(); }
bool isClassifier() const { return _isClassifier; }
int getVarCount() const { return varType.empty() ? 0 : (int)(varType.size() - 1); }
int getCatCount(int vi) const { return catOfs[vi][1] - catOfs[vi][0]; }
int getSubsetSize(int vi) const { return (getCatCount(vi) + 31)/32; }
virtual void setDParams(const TreeParams& _params);
virtual void startTraining( const Ptr<TrainData>& trainData, int flags );
virtual void endTraining();
virtual void initCompVarIdx();
virtual bool train( const Ptr<TrainData>& trainData, int flags );
virtual int addTree( const vector<int>& sidx );
virtual int addNodeAndTrySplit( int parent, const vector<int>& sidx );
virtual const vector<int>& getActiveVars();
virtual int findBestSplit( const vector<int>& _sidx );
virtual void calcValue( int nidx, const vector<int>& _sidx );
virtual WSplit findSplitOrdClass( int vi, const vector<int>& _sidx, double initQuality );
// simple k-means, slightly modified to take into account the "weight" (L1-norm) of each vector.
virtual void clusterCategories( const double* vectors, int n, int m, double* csums, int k, int* labels );
virtual WSplit findSplitCatClass( int vi, const vector<int>& _sidx, double initQuality, int* subset );
virtual WSplit findSplitOrdReg( int vi, const vector<int>& _sidx, double initQuality );
virtual WSplit findSplitCatReg( int vi, const vector<int>& _sidx, double initQuality, int* subset );
virtual int calcDir( int splitidx, const vector<int>& _sidx, vector<int>& _sleft, vector<int>& _sright );
virtual int pruneCV( int root );
virtual double updateTreeRNC( int root, double T, int fold );
virtual bool cutTree( int root, double T, int fold, double min_alpha );
virtual float predictTrees( const Range& range, const Mat& sample, int flags ) const;
virtual float predict( InputArray inputs, OutputArray outputs, int flags ) const;
virtual void writeTrainingParams( FileStorage& fs ) const;
virtual void writeParams( FileStorage& fs ) const;
virtual void writeSplit( FileStorage& fs, int splitidx ) const;
virtual void writeNode( FileStorage& fs, int nidx, int depth ) const;
virtual void writeTree( FileStorage& fs, int root ) const;
virtual void write( FileStorage& fs ) const;
virtual void readParams( const FileNode& fn );
virtual int readSplit( const FileNode& fn );
virtual int readNode( const FileNode& fn );
virtual int readTree( const FileNode& fn );
virtual void read( const FileNode& fn );
virtual const std::vector<int>& getRoots() const { return roots; }
virtual const std::vector<Node>& getNodes() const { return nodes; }
virtual const std::vector<Split>& getSplits() const { return splits; }
virtual const std::vector<int>& getSubsets() const { return subsets; }
TreeParams params;
vector<int> varIdx;
vector<int> compVarIdx;
vector<uchar> varType;
vector<Vec2i> catOfs;
vector<int> catMap;
vector<int> roots;
vector<Node> nodes;
vector<Split> splits;
vector<int> subsets;
vector<int> classLabels;
vector<float> missingSubst;
vector<int> varMapping;
bool _isClassifier;
Ptr<WorkData> w;
};
template <typename T>
static inline void readVectorOrMat(const FileNode & node, std::vector<T> & v)
{
if (node.type() == FileNode::MAP)
{
Mat m;
node >> m;
m.copyTo(v);
}
else if (node.type() == FileNode::SEQ)
{
node >> v;
}
}
}}
#endif /* __OPENCV_ML_PRECOMP_HPP__ */