Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

550 lines
18 KiB

#include <iostream>
#include <map>
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN 1
#define NOMINMAX 1
#include <windows.h>
#endif
#if defined(__APPLE__)
#include <OpenGL/gl.h>
#include <OpenGL/glu.h>
#else
#include <GL/gl.h>
#include <GL/glu.h>
#endif
#include "opencv2/core.hpp"
#include "opencv2/core/opengl.hpp"
#include "opencv2/3d.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
using namespace std;
using namespace cv;
using namespace cv::cuda;
// model data should be identical to the code from tests
enum class ModelType
{
Empty = 0,
File = 1,
Clipping = 2,
Color = 3,
Centered = 4
};
static void generateNormals(const std::vector<Vec3f>& points, const std::vector<std::vector<int>>& indices,
std::vector<Vec3f>& normals)
{
std::vector<std::vector<Vec3f>> preNormals(points.size(), std::vector<Vec3f>());
for (const auto& tri : indices)
{
Vec3f p0 = points[tri[0]];
Vec3f p1 = points[tri[1]];
Vec3f p2 = points[tri[2]];
Vec3f cross = cv::normalize((p1 - p0).cross(p2 - p0));
for (int i = 0; i < 3; i++)
{
preNormals[tri[i]].push_back(cross);
}
}
normals.reserve(points.size());
for (const auto& pn : preNormals)
{
Vec3f sum { };
for (const auto& n : pn)
{
sum += n;
}
normals.push_back(cv::normalize(sum));
}
}
class ModelData
{
public:
ModelData(ModelType type = ModelType::Empty, std::string objPath = { })
{
switch (type)
{
case ModelType::Empty:
{
position = Vec3d(0.0, 0.0, 0.0);
lookat = Vec3d(0.0, 0.0, 0.0);
upVector = Vec3d(0.0, 1.0, 0.0);
fovy = 45.0;
zNear = 0.1;
zFar = 50;
scaleCoeff = 1000.0;
vertices = std::vector<Vec3f>(4, {2.0f, 0, -2.0f});
colors = std::vector<Vec3f>(4, {0, 0, 1.0f});
indices = { };
}
break;
case ModelType::File:
{
position = Vec3d( 1.9, 0.4, 1.3);
lookat = Vec3d( 0.0, 0.0, 0.0);
upVector = Vec3d( 0.0, 1.0, 0.0);
fovy = 45.0;
zNear = 0.1;
zFar = 50;
scaleCoeff = 1000.0;
objectPath = objPath;
std::vector<vector<int>> indvec;
loadMesh(objectPath, vertices, indvec);
// using per-vertex normals as colors
generateNormals(vertices, indvec, colors);
if (vertices.size() != colors.size())
{
std::runtime_error("Model should contain normals for each vertex");
}
for (const auto &vec : indvec)
{
indices.push_back({vec[0], vec[1], vec[2]});
}
for (auto &color : colors)
{
color = Vec3f(abs(color[0]), abs(color[1]), abs(color[2]));
}
}
break;
case ModelType::Clipping:
{
position = Vec3d(0.0, 0.0, 5.0);
lookat = Vec3d(0.0, 0.0, 0.0);
upVector = Vec3d(0.0, 1.0, 0.0);
fovy = 45.0;
zNear = 0.1;
zFar = 50;
scaleCoeff = 1000.0;
vertices =
{
{ 2.0, 0.0, -2.0}, { 0.0, -6.0, -2.0}, {-2.0, 0.0, -2.0},
{ 3.5, -1.0, -5.0}, { 2.5, -2.5, -5.0}, {-1.0, 1.0, -5.0},
{-6.5, -1.0, -3.0}, {-2.5, -2.0, -3.0}, { 1.0, 1.0, -5.0},
};
indices = { {0, 1, 2}, {3, 4, 5}, {6, 7, 8} };
Vec3f col1(217.0, 238.0, 185.0);
Vec3f col2(185.0, 217.0, 238.0);
Vec3f col3(150.0, 10.0, 238.0);
col1 *= (1.f / 255.f);
col2 *= (1.f / 255.f);
col3 *= (1.f / 255.f);
colors =
{
col1, col2, col3,
col2, col3, col1,
col3, col1, col2,
};
}
break;
case ModelType::Centered:
{
position = Vec3d(0.0, 0.0, 5.0);
lookat = Vec3d(0.0, 0.0, 0.0);
upVector = Vec3d(0.0, 1.0, 0.0);
fovy = 45.0;
zNear = 0.1;
zFar = 50;
scaleCoeff = 1000.0;
vertices =
{
{ 2.0, 0.0, -2.0}, { 0.0, -2.0, -2.0}, {-2.0, 0.0, -2.0},
{ 3.5, -1.0, -5.0}, { 2.5, -1.5, -5.0}, {-1.0, 0.5, -5.0},
};
indices = { {0, 1, 2}, {3, 4, 5} };
Vec3f col1(217.0, 238.0, 185.0);
Vec3f col2(185.0, 217.0, 238.0);
col1 *= (1.f / 255.f);
col2 *= (1.f / 255.f);
colors =
{
col1, col2, col1,
col2, col1, col2,
};
}
break;
case ModelType::Color:
{
position = Vec3d(0.0, 0.0, 5.0);
lookat = Vec3d(0.0, 0.0, 0.0);
upVector = Vec3d(0.0, 1.0, 0.0);
fovy = 60.0;
zNear = 0.1;
zFar = 50;
scaleCoeff = 1000.0;
vertices =
{
{ 2.0, 0.0, -2.0},
{ 0.0, 2.0, -3.0},
{-2.0, 0.0, -2.0},
{ 0.0, -2.0, 1.0},
};
indices = { {0, 1, 2}, {0, 2, 3} };
colors =
{
{ 0.0f, 0.0f, 1.0f},
{ 0.0f, 1.0f, 0.0f},
{ 1.0f, 0.0f, 0.0f},
{ 0.0f, 1.0f, 0.0f},
};
}
break;
default:
CV_Error(Error::StsBadArg, "Unknown model type");
break;
}
}
ModelData(std::string modelPath, double fov, double near, double far, double scale, Vec3d pos, Vec3d center, Vec3d up)
{
objectPath = modelPath;
position = pos;
lookat = center;
upVector = up;
fovy = fov;
zNear = near;
zFar = far;
scaleCoeff = scale;
std::vector<vector<int>> indvec;
loadMesh(objectPath, vertices, indvec, noArray(), colors);
if (vertices.size() != colors.size())
{
std::runtime_error("Model should contain normals for each vertex");
}
for (const auto &vec : indvec)
{
indices.push_back({vec[0], vec[1], vec[2]});
}
}
Vec3d position;
Vec3d lookat;
Vec3d upVector;
double fovy, zNear, zFar, scaleCoeff;
std::vector<Vec3f> vertices;
std::vector<Vec3i> indices;
std::vector<Vec3f> colors;
string objectPath;
};
struct DrawData
{
ogl::Arrays arr;
ogl::Buffer indices;
};
void draw(void* userdata);
void draw(void* userdata)
{
DrawData* data = static_cast<DrawData*>(userdata);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
ogl::render(data->arr, data->indices, ogl::TRIANGLES);
}
static void generateImage(cv::Size imgSz, TriangleShadingType shadingType, TriangleCullingMode cullingMode,
const ModelData& modelData, cv::Mat& colorImage, cv::Mat& depthImage)
{
namedWindow("OpenGL", WINDOW_OPENGL);
resizeWindow("OpenGL", imgSz.width, imgSz.height);
DrawData data;
std::vector<Vec3f> vertices;
std::vector<Vec4f> colors4f;
std::vector<int> idxLinear;
if (shadingType == RASTERIZE_SHADING_FLAT)
{
// rearrange vertices and colors for flat shading
int ctr = 0;
for (const auto& idx : modelData.indices)
{
for (int i = 0; i < 3; i++)
{
vertices.push_back(modelData.vertices[idx[i]]);
idxLinear.push_back(ctr++);
}
Vec3f ci = modelData.colors[idx[0]];
for (int i = 0; i < 3; i++)
{
colors4f.emplace_back(ci[0], ci[1], ci[2], 1.f);
}
}
}
else
{
vertices = modelData.vertices;
for (const auto& c : modelData.colors)
{
Vec3f ci = (shadingType == RASTERIZE_SHADING_SHADED) ? c: cv::Vec3f::all(1.f);
colors4f.emplace_back(ci[0], ci[1], ci[2], 1.0);
}
for (const auto& idx : modelData.indices)
{
for (int i = 0; i < 3; i++)
{
idxLinear.push_back(idx[i]);
}
}
}
data.arr.setVertexArray(vertices);
data.arr.setColorArray(colors4f);
data.indices.copyFrom(idxLinear);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(modelData.fovy, (double)imgSz.width / imgSz.height, modelData.zNear, modelData.zFar);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
//gluLookAt(0, 0, 5, 0, 0, 0, 0, 1, 0);
gluLookAt(modelData.position[0], modelData.position[1], modelData.position[2],
modelData.lookat [0], modelData.lookat [1], modelData.lookat [2],
modelData.upVector[0], modelData.upVector[1], modelData.upVector[2]);
if (cullingMode == RASTERIZE_CULLING_NONE)
{
glDisable(GL_CULL_FACE);
}
else
{
glEnable(GL_CULL_FACE);
glCullFace(GL_FRONT);
if (cullingMode == RASTERIZE_CULLING_CW)
{
glFrontFace(GL_CW);
}
else
{
glFrontFace(GL_CCW);
}
}
glEnable(GL_DEPTH_TEST);
cv::setOpenGlDrawCallback("OpenGL", draw, &data);
const int framesToSkip = 10;
for (int f = 0; f < framesToSkip; f++)
{
updateWindow("OpenGL");
colorImage = cv::Mat(imgSz.height, imgSz.width, CV_8UC3);
glReadPixels(0, 0, imgSz.width, imgSz.height, GL_RGB, GL_UNSIGNED_BYTE, colorImage.data);
cv::cvtColor(colorImage, colorImage, cv::COLOR_RGB2BGR);
cv::flip(colorImage, colorImage, 0);
depthImage = cv::Mat(imgSz.height, imgSz.width, CV_32F);
glReadPixels(0, 0, imgSz.width, imgSz.height, GL_DEPTH_COMPONENT, GL_FLOAT, depthImage.data);
// map from [0, 1] to [zNear, zFar]
for (auto it = depthImage.begin<float>(); it != depthImage.end<float>(); ++it)
{
*it = (float)(modelData.zNear * modelData.zFar / (double(*it) * (modelData.zNear - modelData.zFar) + modelData.zFar));
}
cv::flip(depthImage, depthImage, 0);
depthImage.convertTo(depthImage, CV_16U, modelData.scaleCoeff);
char key = (char)waitKey(40);
if (key == 27)
break;
}
cv::setOpenGlDrawCallback("OpenGL", 0, 0);
cv::destroyAllWindows();
}
int main(int argc, char* argv[])
{
cv::CommandLineParser parser(argc, argv,
"{ help h usage ? | | show this message }"
"{ outPath | | output path for generated images }"
"{ modelPath | | path to 3d model to render }"
"{ custom | | pass it to use custom camera parameters instead of iterating through test parameters }"
"{ fov | 45.0 | (if custom parameters are used) field of view }"
"{ posx | 1.0 | (if custom parameters are used) camera position x }"
"{ posy | 1.0 | (if custom parameters are used) camera position y }"
"{ posz | 1.0 | (if custom parameters are used) camera position z }"
"{ lookatx | 0.0 | (if custom parameters are used) lookup camera direction x }"
"{ lookaty | 0.0 | (if custom parameters are used) lookup camera direction y }"
"{ lookatz | 0.0 | (if custom parameters are used) lookup camera direction z }"
"{ upx | 0.0 | (if custom parameters are used) up camera direction x }"
"{ upy | 1.0 | (if custom parameters are used) up camera direction y }"
"{ upz | 0.0 | (if custom parameters are used) up camera direction z }"
"{ resx | 640 | (if custom parameters are used) camera resolution x }"
"{ resy | 480 | (if custom parameters are used) camera resolution y }"
"{ zNear | 0.1 | (if custom parameters are used) near z clipping plane }"
"{ zFar | 50 | (if custom parameters are used) far z clipping plane }"
"{ scaleCoeff | 1000 | (if custom parameters are used) scale coefficient for saving depth }"
"{ shading | | (if custom parameters are used) shading type: white/flat/shaded }"
"{ culling | | (if custom parameters are used) culling type: none/cw/ccw }"
"{ colorPath | | (if custom parameters are used) output path for color image }"
"{ depthPath | | (if custom parameters are used) output path for depth image }"
);
parser.about("This app is used to generate test data for triangleRasterize() function");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
std::string modelPath = parser.get<std::string>("modelPath");
if (modelPath.empty())
{
std::cout << "No model path given" << std::endl;
return -1;
}
if (parser.has("custom"))
{
double fov = parser.get<double>("fov");
Vec3d position, lookat, upVector;
position[0] = parser.get<double>("posx");
position[1] = parser.get<double>("posy");
position[2] = parser.get<double>("posz");
lookat[0] = parser.get<double>("lookatx");
lookat[1] = parser.get<double>("lookaty");
lookat[2] = parser.get<double>("lookatz");
upVector[0] = parser.get<double>("upx");
upVector[1] = parser.get<double>("upy");
upVector[2] = parser.get<double>("upz");
Size res;
res.width = parser.get<int>("resx");
res.height = parser.get<int>("resy");
double zNear = parser.get<double>("zNear");
double zFar = parser.get<double>("zFar");
double scaleCoeff = parser.get<double>("scaleCoeff");
std::map<std::string, cv::TriangleShadingType> shadingTxt = {
{ "white", RASTERIZE_SHADING_WHITE },
{ "flat", RASTERIZE_SHADING_FLAT },
{ "shaded", RASTERIZE_SHADING_SHADED },
};
cv::TriangleShadingType shadingType = shadingTxt.at(parser.get<std::string>("shading"));
std::map<std::string, cv::TriangleCullingMode> cullingTxt = {
{ "none", RASTERIZE_CULLING_NONE },
{ "cw", RASTERIZE_CULLING_CW },
{ "ccw", RASTERIZE_CULLING_CCW },
};
cv::TriangleCullingMode cullingMode = cullingTxt.at(parser.get<std::string>("culling"));
std::string colorPath = parser.get<std::string>("colorPath");
std::string depthPath = parser.get<std::string>("depthPath");
Mat colorImage, depthImage;
ModelData modelData(modelPath, fov, zNear, zFar, scaleCoeff, position, lookat, upVector);
generateImage(res, shadingType, cullingMode, modelData, colorImage, depthImage);
cv::imwrite(colorPath, colorImage);
cv::imwrite(depthPath, depthImage);
}
else
{
std::string outPath = parser.get<std::string>("outPath");
if (outPath.empty())
{
std::cout << "No output path given" << std::endl;
return -1;
}
std::array<cv::Size, 4> resolutions = {cv::Size{700, 700}, cv::Size{640, 480}, cv::Size(256, 256), cv::Size(320, 240)};
std::vector<std::pair<cv::TriangleShadingType, std::string>> shadingTxt = {
{RASTERIZE_SHADING_WHITE, "White"},
{RASTERIZE_SHADING_FLAT, "Flat"},
{RASTERIZE_SHADING_SHADED, "Shaded"},
};
std::vector<std::pair<cv::TriangleCullingMode, std::string>> cullingTxt = {
{RASTERIZE_CULLING_NONE, "None"},
{RASTERIZE_CULLING_CW, "CW"},
{RASTERIZE_CULLING_CCW, "CCW"},
};
std::vector<std::pair<ModelType, std::string>> modelTxt = {
{ModelType::File, "File"},
{ModelType::Clipping, "Clipping"},
{ModelType::Color, "Color"},
{ModelType::Centered, "Centered"},
};
for (const auto& res : resolutions)
{
for (const auto shadingPair : shadingTxt)
{
cv::TriangleShadingType shadingType = shadingPair.first;
std::string shadingName = shadingPair.second;
for (const auto cullingPair : cullingTxt)
{
cv::TriangleCullingMode cullingMode = cullingPair.first;
std::string cullingName = cullingPair.second;
for (const auto modelPair : modelTxt)
{
ModelType modelType = modelPair.first;
std::string modelName = modelPair.second;
std::string suffix = cv::format("%s_%dx%d_Cull%s", modelName.c_str(), res.width, res.height, cullingName.c_str());
std::cout << suffix + "_" + shadingName << "..." << std::endl;
cv::Mat colorImage, depthImage;
ModelData modelData(modelType, modelPath);
generateImage(res, shadingType, cullingMode, modelData, colorImage, depthImage);
std::string gtPathColor = outPath + "/example_image_" + suffix + "_" + shadingName + ".png";
std::string gtPathDepth = outPath + "/depth_image_" + suffix + ".png";
cv::imwrite(gtPathColor, colorImage);
cv::imwrite(gtPathDepth, depthImage);
}
}
}
}
}
return 0;
}