|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2008-2013, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and / or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
using namespace cv::softcascade;
|
|
|
|
|
|
|
|
class HOG6MagLuv : public ChannelFeatureBuilder
|
|
|
|
{
|
|
|
|
enum {N_CHANNELS = 10};
|
|
|
|
public:
|
|
|
|
virtual ~HOG6MagLuv() {}
|
|
|
|
virtual cv::AlgorithmInfo* info() const;
|
|
|
|
|
|
|
|
virtual int totalChannels() const {return N_CHANNELS; }
|
|
|
|
|
|
|
|
virtual void operator()(cv::InputArray _frame, cv::OutputArray _integrals, cv::Size channelsSize) const
|
|
|
|
{
|
|
|
|
CV_Assert(_frame.type() == CV_8UC3);
|
|
|
|
|
|
|
|
cv::Mat frame = _frame.getMat();
|
|
|
|
int h = frame.rows;
|
|
|
|
int w = frame.cols;
|
|
|
|
|
|
|
|
if (channelsSize != cv::Size())
|
|
|
|
_integrals.create(channelsSize.height * N_CHANNELS + 1, channelsSize.width + 1, CV_32SC1);
|
|
|
|
|
|
|
|
if(_integrals.empty())
|
|
|
|
_integrals.create(frame.rows * N_CHANNELS + 1, frame.cols + 1, CV_32SC1);
|
|
|
|
|
|
|
|
cv::Mat& integrals = _integrals.getMatRef();
|
|
|
|
|
|
|
|
cv::Mat channels, gray;
|
|
|
|
|
|
|
|
channels.create(h * N_CHANNELS, w, CV_8UC1);
|
|
|
|
channels.setTo(0);
|
|
|
|
|
|
|
|
cvtColor(frame, gray, cv::COLOR_BGR2GRAY);
|
|
|
|
|
|
|
|
cv::Mat df_dx, df_dy, mag, angle;
|
|
|
|
cv::Sobel(gray, df_dx, CV_32F, 1, 0);
|
|
|
|
cv::Sobel(gray, df_dy, CV_32F, 0, 1);
|
|
|
|
|
|
|
|
cv::cartToPolar(df_dx, df_dy, mag, angle, true);
|
|
|
|
mag *= (1.f / (8 * sqrt(2.f)));
|
|
|
|
|
|
|
|
cv::Mat nmag = channels(cv::Rect(0, h * (N_CHANNELS - 4), w, h));
|
|
|
|
mag.convertTo(nmag, CV_8UC1);
|
|
|
|
|
|
|
|
angle *= 6 / 360.f;
|
|
|
|
|
|
|
|
for (int y = 0; y < h; ++y)
|
|
|
|
{
|
|
|
|
uchar* magnitude = nmag.ptr<uchar>(y);
|
|
|
|
float* ang = angle.ptr<float>(y);
|
|
|
|
|
|
|
|
for (int x = 0; x < w; ++x)
|
|
|
|
{
|
|
|
|
channels.ptr<uchar>(y + (h * (int)ang[x]))[x] = magnitude[x];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Mat luv, shrunk;
|
|
|
|
cv::cvtColor(frame, luv, cv::COLOR_BGR2Luv);
|
|
|
|
|
|
|
|
std::vector<cv::Mat> splited;
|
|
|
|
for (int i = 0; i < 3; ++i)
|
|
|
|
splited.push_back(channels(cv::Rect(0, h * (7 + i), w, h)));
|
|
|
|
split(luv, splited);
|
|
|
|
cv::resize(channels, shrunk, cv::Size(integrals.cols - 1, integrals.rows - 1), -1 , -1, cv::INTER_AREA);
|
|
|
|
cv::integral(shrunk, integrals, cv::noArray(), CV_32S);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
using cv::softcascade::ChannelFeatureBuilder;
|
|
|
|
using cv::softcascade::ChannelFeature;
|
|
|
|
|
|
|
|
CV_INIT_ALGORITHM(HOG6MagLuv, "ChannelFeatureBuilder.HOG6MagLuv", );
|
|
|
|
|
|
|
|
ChannelFeatureBuilder::~ChannelFeatureBuilder() {}
|
|
|
|
|
|
|
|
cv::Ptr<ChannelFeatureBuilder> ChannelFeatureBuilder::create(const cv::String& featureType)
|
|
|
|
{
|
|
|
|
return Algorithm::create<ChannelFeatureBuilder>("ChannelFeatureBuilder." + featureType);
|
|
|
|
}
|
|
|
|
|
|
|
|
ChannelFeature::ChannelFeature(int x, int y, int w, int h, int ch)
|
|
|
|
: bb(cv::Rect(x, y, w, h)), channel(ch) {}
|
|
|
|
|
|
|
|
bool ChannelFeature::operator ==(ChannelFeature b)
|
|
|
|
{
|
|
|
|
return bb == b.bb && channel == b.channel;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool ChannelFeature::operator !=(ChannelFeature b)
|
|
|
|
{
|
|
|
|
return bb != b.bb || channel != b.channel;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
float ChannelFeature::operator() (const cv::Mat& integrals, const cv::Size& model) const
|
|
|
|
{
|
|
|
|
int step = model.width + 1;
|
|
|
|
|
|
|
|
const int* ptr = integrals.ptr<int>(0) + (model.height * channel + bb.y) * step + bb.x;
|
|
|
|
|
|
|
|
int a = ptr[0];
|
|
|
|
int b = ptr[bb.width];
|
|
|
|
|
|
|
|
ptr += bb.height * step;
|
|
|
|
|
|
|
|
int c = ptr[bb.width];
|
|
|
|
int d = ptr[0];
|
|
|
|
|
|
|
|
return (float)(a - b + c - d);
|
|
|
|
}
|
|
|
|
|
|
|
|
void cv::softcascade::write(cv::FileStorage& fs, const cv::String&, const ChannelFeature& f)
|
|
|
|
{
|
|
|
|
fs << "{" << "channel" << f.channel << "rect" << f.bb << "}";
|
|
|
|
}
|
|
|
|
|
|
|
|
std::ostream& cv::softcascade::operator<<(std::ostream& out, const ChannelFeature& m)
|
|
|
|
{
|
|
|
|
return out << m.channel << " " << "[" << m.bb.width << " x " << m.bb.height << " from (" << m.bb.x << ", " << m.bb.y << ")]";
|
|
|
|
}
|
|
|
|
|
|
|
|
ChannelFeature::~ChannelFeature(){}
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
using namespace cv::softcascade;
|
|
|
|
|
|
|
|
class ChannelFeaturePool : public FeaturePool
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
ChannelFeaturePool(cv::Size m, int n, int ch) : FeaturePool(), model(m), N_CHANNELS(ch)
|
|
|
|
{
|
|
|
|
CV_Assert(m != cv::Size() && n > 0 && (ch == 10 || ch == 8));
|
|
|
|
fill(n);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual int size() const { return (int)pool.size(); }
|
|
|
|
virtual float apply(int fi, int si, const cv::Mat& integrals) const;
|
|
|
|
virtual void write( cv::FileStorage& fs, int index) const;
|
|
|
|
|
|
|
|
virtual ~ChannelFeaturePool() {}
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
void fill(int desired);
|
|
|
|
|
|
|
|
cv::Size model;
|
|
|
|
std::vector<ChannelFeature> pool;
|
|
|
|
int N_CHANNELS;
|
|
|
|
};
|
|
|
|
|
|
|
|
float ChannelFeaturePool::apply(int fi, int si, const cv::Mat& integrals) const
|
|
|
|
{
|
|
|
|
return pool[fi](integrals.row(si), model);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ChannelFeaturePool::write( cv::FileStorage& fs, int index) const
|
|
|
|
{
|
|
|
|
|
|
|
|
CV_Assert((index >= 0) && (index < (int)pool.size()));
|
|
|
|
fs << pool[index];
|
|
|
|
}
|
|
|
|
|
|
|
|
void ChannelFeaturePool::fill(int desired)
|
|
|
|
{
|
|
|
|
using namespace cv::softcascade::internal;
|
|
|
|
int mw = model.width;
|
|
|
|
int mh = model.height;
|
|
|
|
|
|
|
|
int maxPoolSize = (mw -1) * mw / 2 * (mh - 1) * mh / 2 * N_CHANNELS;
|
|
|
|
|
|
|
|
int nfeatures = std::min(desired, maxPoolSize);
|
|
|
|
pool.reserve(nfeatures);
|
|
|
|
|
|
|
|
Random::engine eng((Random::seed_type)FEATURE_RECT_SEED);
|
|
|
|
Random::engine eng_ch(DCHANNELS_SEED);
|
|
|
|
|
|
|
|
Random::uniform chRand(0, N_CHANNELS - 1);
|
|
|
|
|
|
|
|
Random::uniform xRand(0, model.width - 2);
|
|
|
|
Random::uniform yRand(0, model.height - 2);
|
|
|
|
|
|
|
|
Random::uniform wRand(1, model.width - 1);
|
|
|
|
Random::uniform hRand(1, model.height - 1);
|
|
|
|
|
|
|
|
while (pool.size() < size_t(nfeatures))
|
|
|
|
{
|
|
|
|
int x = xRand(eng);
|
|
|
|
int y = yRand(eng);
|
|
|
|
|
|
|
|
int w = 1 + wRand(eng, model.width - x - 1);
|
|
|
|
int h = 1 + hRand(eng, model.height - y - 1);
|
|
|
|
|
|
|
|
CV_Assert(w > 0);
|
|
|
|
CV_Assert(h > 0);
|
|
|
|
|
|
|
|
CV_Assert(w + x < model.width);
|
|
|
|
CV_Assert(h + y < model.height);
|
|
|
|
|
|
|
|
int ch = chRand(eng_ch);
|
|
|
|
|
|
|
|
ChannelFeature f(x, y, w, h, ch);
|
|
|
|
|
|
|
|
if (std::find(pool.begin(), pool.end(),f) == pool.end())
|
|
|
|
{
|
|
|
|
pool.push_back(f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Ptr<FeaturePool> FeaturePool::create(const cv::Size& model, int nfeatures, int nchannels )
|
|
|
|
{
|
|
|
|
cv::Ptr<FeaturePool> pool(new ChannelFeaturePool(model, nfeatures, nchannels));
|
|
|
|
return pool;
|
|
|
|
}
|