|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
|
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// @Authors
|
|
|
|
// Peng Xiao, pengxiao@multicorewareinc.com
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other oclMaterials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors as is and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Dft
|
|
|
|
|
|
|
|
PARAM_TEST_CASE(Dft, cv::Size, int)
|
|
|
|
{
|
|
|
|
cv::Size dft_size;
|
|
|
|
int dft_flags;
|
|
|
|
virtual void SetUp()
|
|
|
|
{
|
|
|
|
dft_size = GET_PARAM(0);
|
|
|
|
dft_flags = GET_PARAM(1);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
OCL_TEST_P(Dft, C2C)
|
|
|
|
{
|
|
|
|
cv::Mat a = randomMat(dft_size, CV_32FC2, 0.0, 100.0);
|
|
|
|
cv::Mat b_gold;
|
|
|
|
|
|
|
|
cv::ocl::oclMat d_b;
|
|
|
|
|
|
|
|
cv::dft(a, b_gold, dft_flags);
|
|
|
|
cv::ocl::dft(cv::ocl::oclMat(a), d_b, a.size(), dft_flags);
|
|
|
|
EXPECT_MAT_NEAR(b_gold, cv::Mat(d_b), a.size().area() * 1e-4);
|
|
|
|
}
|
|
|
|
|
|
|
|
OCL_TEST_P(Dft, R2C)
|
|
|
|
{
|
|
|
|
cv::Mat a = randomMat(dft_size, CV_32FC1, 0.0, 100.0);
|
|
|
|
cv::Mat b_gold, b_gold_roi;
|
|
|
|
|
|
|
|
cv::ocl::oclMat d_b, d_c;
|
|
|
|
cv::ocl::dft(cv::ocl::oclMat(a), d_b, a.size(), dft_flags);
|
|
|
|
cv::dft(a, b_gold, cv::DFT_COMPLEX_OUTPUT | dft_flags);
|
|
|
|
|
|
|
|
b_gold_roi = b_gold(cv::Rect(0, 0, d_b.cols, d_b.rows));
|
|
|
|
EXPECT_MAT_NEAR(b_gold_roi, cv::Mat(d_b), a.size().area() * 1e-4);
|
|
|
|
|
|
|
|
cv::Mat c_gold;
|
|
|
|
cv::dft(b_gold, c_gold, cv::DFT_INVERSE | cv::DFT_REAL_OUTPUT | cv::DFT_SCALE);
|
|
|
|
EXPECT_MAT_NEAR(b_gold_roi, cv::Mat(d_b), a.size().area() * 1e-4);
|
|
|
|
}
|
|
|
|
|
|
|
|
OCL_TEST_P(Dft, R2CthenC2R)
|
|
|
|
{
|
|
|
|
cv::Mat a = randomMat(dft_size, CV_32FC1, 0.0, 10.0);
|
|
|
|
|
|
|
|
cv::ocl::oclMat d_b, d_c;
|
|
|
|
cv::ocl::dft(cv::ocl::oclMat(a), d_b, a.size(), 0);
|
|
|
|
cv::ocl::dft(d_b, d_c, a.size(), cv::DFT_SCALE | cv::DFT_INVERSE | cv::DFT_REAL_OUTPUT);
|
|
|
|
EXPECT_MAT_NEAR(a, d_c, a.size().area() * 1e-4);
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(OCL_ImgProc, Dft, testing::Combine(
|
|
|
|
testing::Values(cv::Size(2, 3), cv::Size(5, 4), cv::Size(25, 20), cv::Size(512, 1), cv::Size(1024, 768)),
|
|
|
|
testing::Values(0, (int)cv::DFT_ROWS, (int)cv::DFT_SCALE) ));
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
|
|
// MulSpectrums
|
|
|
|
|
|
|
|
PARAM_TEST_CASE(MulSpectrums, cv::Size, DftFlags, bool)
|
|
|
|
{
|
|
|
|
cv::Size size;
|
|
|
|
int flag;
|
|
|
|
bool ccorr;
|
|
|
|
cv::Mat a, b;
|
|
|
|
|
|
|
|
virtual void SetUp()
|
|
|
|
{
|
|
|
|
size = GET_PARAM(0);
|
|
|
|
flag = GET_PARAM(1);
|
|
|
|
ccorr = GET_PARAM(2);
|
|
|
|
|
|
|
|
a = randomMat(size, CV_32FC2, -100, 100, false);
|
|
|
|
b = randomMat(size, CV_32FC2, -100, 100, false);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
OCL_TEST_P(MulSpectrums, Simple)
|
|
|
|
{
|
|
|
|
cv::ocl::oclMat c;
|
|
|
|
cv::ocl::mulSpectrums(cv::ocl::oclMat(a), cv::ocl::oclMat(b), c, flag, 1.0, ccorr);
|
|
|
|
|
|
|
|
cv::Mat c_gold;
|
|
|
|
cv::mulSpectrums(a, b, c_gold, flag, ccorr);
|
|
|
|
|
|
|
|
EXPECT_MAT_NEAR(c_gold, c, 1e-2);
|
|
|
|
}
|
|
|
|
|
|
|
|
OCL_TEST_P(MulSpectrums, Scaled)
|
|
|
|
{
|
|
|
|
float scale = 1.f / size.area();
|
|
|
|
|
|
|
|
cv::ocl::oclMat c;
|
|
|
|
cv::ocl::mulSpectrums(cv::ocl::oclMat(a), cv::ocl::oclMat(b), c, flag, scale, ccorr);
|
|
|
|
|
|
|
|
cv::Mat c_gold;
|
|
|
|
cv::mulSpectrums(a, b, c_gold, flag, ccorr);
|
|
|
|
c_gold.convertTo(c_gold, c_gold.type(), scale);
|
|
|
|
|
|
|
|
EXPECT_MAT_NEAR(c_gold, c, 1e-2);
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(OCL_ImgProc, MulSpectrums, testing::Combine(
|
|
|
|
DIFFERENT_SIZES,
|
|
|
|
testing::Values(DftFlags(0)),
|
|
|
|
testing::Values(false, true)));
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////
|
|
|
|
// Convolve
|
|
|
|
|
|
|
|
void static convolveDFT(const cv::Mat& A, const cv::Mat& B, cv::Mat& C, bool ccorr = false)
|
|
|
|
{
|
|
|
|
// reallocate the output array if needed
|
|
|
|
C.create(std::abs(A.rows - B.rows) + 1, std::abs(A.cols - B.cols) + 1, A.type());
|
|
|
|
cv::Size dftSize;
|
|
|
|
|
|
|
|
// compute the size of DFT transform
|
|
|
|
dftSize.width = cv::getOptimalDFTSize(A.cols + B.cols - 1);
|
|
|
|
dftSize.height = cv::getOptimalDFTSize(A.rows + B.rows - 1);
|
|
|
|
|
|
|
|
// allocate temporary buffers and initialize them with 0s
|
|
|
|
cv::Mat tempA(dftSize, A.type(), cv::Scalar::all(0));
|
|
|
|
cv::Mat tempB(dftSize, B.type(), cv::Scalar::all(0));
|
|
|
|
|
|
|
|
// copy A and B to the top-left corners of tempA and tempB, respectively
|
|
|
|
cv::Mat roiA(tempA, cv::Rect(0, 0, A.cols, A.rows));
|
|
|
|
A.copyTo(roiA);
|
|
|
|
cv::Mat roiB(tempB, cv::Rect(0, 0, B.cols, B.rows));
|
|
|
|
B.copyTo(roiB);
|
|
|
|
|
|
|
|
// now transform the padded A & B in-place;
|
|
|
|
// use "nonzeroRows" hint for faster processing
|
|
|
|
cv::dft(tempA, tempA, 0, A.rows);
|
|
|
|
cv::dft(tempB, tempB, 0, B.rows);
|
|
|
|
|
|
|
|
// multiply the spectrums;
|
|
|
|
// the function handles packed spectrum representations well
|
|
|
|
cv::mulSpectrums(tempA, tempB, tempA, 0, ccorr);
|
|
|
|
|
|
|
|
// transform the product back from the frequency domain.
|
|
|
|
// Even though all the result rows will be non-zero,
|
|
|
|
// you need only the first C.rows of them, and thus you
|
|
|
|
// pass nonzeroRows == C.rows
|
|
|
|
cv::dft(tempA, tempA, cv::DFT_INVERSE + cv::DFT_SCALE, C.rows);
|
|
|
|
|
|
|
|
// now copy the result back to C.
|
|
|
|
tempA(cv::Rect(0, 0, C.cols, C.rows)).copyTo(C);
|
|
|
|
}
|
|
|
|
|
|
|
|
IMPLEMENT_PARAM_CLASS(KSize, int);
|
|
|
|
IMPLEMENT_PARAM_CLASS(Ccorr, bool);
|
|
|
|
|
|
|
|
PARAM_TEST_CASE(Convolve_DFT, cv::Size, KSize, Ccorr)
|
|
|
|
{
|
|
|
|
cv::Size size;
|
|
|
|
int ksize;
|
|
|
|
bool ccorr;
|
|
|
|
|
|
|
|
cv::Mat src;
|
|
|
|
cv::Mat kernel;
|
|
|
|
|
|
|
|
cv::Mat dst_gold;
|
|
|
|
|
|
|
|
virtual void SetUp()
|
|
|
|
{
|
|
|
|
size = GET_PARAM(0);
|
|
|
|
ksize = GET_PARAM(1);
|
|
|
|
ccorr = GET_PARAM(2);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
OCL_TEST_P(Convolve_DFT, Accuracy)
|
|
|
|
{
|
|
|
|
cv::Mat src = randomMat(size, CV_32FC1, 0.0, 100.0);
|
|
|
|
cv::Mat kernel = randomMat(cv::Size(ksize, ksize), CV_32FC1, 0.0, 1.0);
|
|
|
|
|
|
|
|
cv::ocl::oclMat dst;
|
|
|
|
cv::ocl::convolve(cv::ocl::oclMat(src), cv::ocl::oclMat(kernel), dst, ccorr);
|
|
|
|
|
|
|
|
cv::Mat dst_gold;
|
|
|
|
convolveDFT(src, kernel, dst_gold, ccorr);
|
|
|
|
|
|
|
|
EXPECT_MAT_NEAR(dst, dst_gold, 1e-1);
|
|
|
|
}
|
|
|
|
#define DIFFERENT_CONVOLVE_SIZES testing::Values(cv::Size(251, 257), cv::Size(113, 113), cv::Size(200, 480), cv::Size(1300, 1300))
|
|
|
|
INSTANTIATE_TEST_CASE_P(OCL_ImgProc, Convolve_DFT, testing::Combine(
|
|
|
|
DIFFERENT_CONVOLVE_SIZES,
|
|
|
|
testing::Values(KSize(19), KSize(23), KSize(45)),
|
|
|
|
testing::Values(Ccorr(true)/*, Ccorr(false)*/))); // TODO false ccorr cannot pass for some instances
|