Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

490 lines
16 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Used in accuracy and perf tests as a content of .cpp file
// Note: don't use "precomp.hpp" here
#include "opencv2/ts.hpp"
#include "opencv2/ts/ts_perf.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/dnn.hpp"
#include "test_common.hpp"
#include <opencv2/core/utils/configuration.private.hpp>
#include <opencv2/core/utils/logger.hpp>
namespace cv { namespace dnn {
CV__DNN_INLINE_NS_BEGIN
void PrintTo(const cv::dnn::Backend& v, std::ostream* os)
{
switch (v) {
case DNN_BACKEND_DEFAULT: *os << "DEFAULT"; return;
case DNN_BACKEND_HALIDE: *os << "HALIDE"; return;
case DNN_BACKEND_INFERENCE_ENGINE: *os << "DLIE*"; return;
case DNN_BACKEND_VKCOM: *os << "VKCOM"; return;
case DNN_BACKEND_OPENCV: *os << "OCV"; return;
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low CUDA backend for the DNN module * stub cuda4dnn design * minor fixes for tests and doxygen * add csl public api directory to module headers * add low-level CSL components * add high-level CSL components * integrate csl::Tensor into backbone code * switch to CPU iff unsupported; otherwise, fail on error * add fully connected layer * add softmax layer * add activation layers * support arbitary rank TensorDescriptor * pass input wrappers to `initCUDA()` * add 1d/2d/3d-convolution * add pooling layer * reorganize and refactor code * fixes for gcc, clang and doxygen; remove cxx14/17 code * add blank_layer * add LRN layer * add rounding modes for pooling layer * split tensor.hpp into tensor.hpp and tensor_ops.hpp * add concat layer * add scale layer * add batch normalization layer * split math.cu into activations.cu and math.hpp * add eltwise layer * add flatten layer * add tensor transform api * add asymmetric padding support for convolution layer * add reshape layer * fix rebase issues * add permute layer * add padding support for concat layer * refactor and reorganize code * add normalize layer * optimize bias addition in scale layer * add prior box layer * fix and optimize normalize layer * add asymmetric padding support for pooling layer * add event API * improve pooling performance for some padding scenarios * avoid over-allocation of compute resources to kernels * improve prior box performance * enable layer fusion * add const layer * add resize layer * add slice layer * add padding layer * add deconvolution layer * fix channelwise ReLU initialization * add vector traits * add vectorized versions of relu, clipped_relu, power * add vectorized concat kernels * improve concat_with_offsets performance * vectorize scale and bias kernels * add support for multi-billion element tensors * vectorize prior box kernels * fix address alignment check * improve bias addition performance of conv/deconv/fc layers * restructure code for supporting multiple targets * add DNN_TARGET_CUDA_FP64 * add DNN_TARGET_FP16 * improve vectorization * add region layer * improve tensor API, add dynamic ranks 1. use ManagedPtr instead of a Tensor in backend wrapper 2. add new methods to tensor classes - size_range: computes the combined size of for a given axis range - tensor span/view can be constructed from a raw pointer and shape 3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time) 4. remove device code from tensor classes (as they are unused) 5. enforce strict conditions on tensor class APIs to improve debugging ability * fix parametric relu activation * add squeeze/unsqueeze tensor API * add reorg layer * optimize permute and enable 2d permute * enable 1d and 2d slice * add split layer * add shuffle channel layer * allow tensors of different ranks in reshape primitive * patch SliceOp to allow Crop Layer * allow extra shape inputs in reshape layer * use `std::move_backward` instead of `std::move` for insert in resizable_static_array * improve workspace management * add spatial LRN * add nms (cpu) to region layer * add max pooling with argmax ( and a fix to limits.hpp) * add max unpooling layer * rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA * update supportBackend to be more rigorous * remove stray include from preventing non-cuda build * include op_cuda.hpp outside condition #if * refactoring, fixes and many optimizations * drop DNN_TARGET_CUDA_FP64 * fix gcc errors * increase max. tensor rank limit to six * add Interp layer * drop custom layers; use BackendNode * vectorize activation kernels * fixes for gcc * remove wrong assertion * fix broken assertion in unpooling primitive * fix build errors in non-CUDA build * completely remove workspace from public API * fix permute layer * enable accuracy and perf. tests for DNN_TARGET_CUDA * add asynchronous forward * vectorize eltwise ops * vectorize fill kernel * fixes for gcc * remove CSL headers from public API * remove csl header source group from cmake * update min. cudnn version in cmake * add numerically stable FP32 log1pexp * refactor code * add FP16 specialization to cudnn based tensor addition * vectorize scale1 and bias1 + minor refactoring * fix doxygen build * fix invalid alignment assertion * clear backend wrappers before allocateLayers * ignore memory lock failures * do not allocate internal blobs * integrate NVTX * add numerically stable half precision log1pexp * fix indentation, following coding style, improve docs * remove accidental modification of IE code * Revert "add asynchronous forward" This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70. * [cmake] throw error for unsupported CC versions * fix rebase issues * add more docs, refactor code, fix bugs * minor refactoring and fixes * resolve warnings/errors from clang * remove haveCUDA() checks from supportBackend() * remove NVTX integration * changes based on review comments * avoid exception when no CUDA device is present * add color code for CUDA in Net::dump
5 years ago
case DNN_BACKEND_CUDA: *os << "CUDA"; return;
case DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019: *os << "DLIE"; return;
case DNN_BACKEND_INFERENCE_ENGINE_NGRAPH: *os << "NGRAPH"; return;
Merge pull request #20406 from MarkGHX:gsoc_2021_webnn [GSoC] OpenCV.js: Accelerate OpenCV.js DNN via WebNN * Add WebNN backend for OpenCV DNN Module Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp Add WebNN head files into OpenCV 3rd partiy files Create webnn.hpp update cmake Complete README and add OpenCVDetectWebNN.cmake file add webnn.cpp Modify webnn.cpp Can successfully compile the codes for creating a MLContext Update webnn.cpp Update README.md Update README.md Update README.md Update README.md Update cmake files and update README.md Update OpenCVDetectWebNN.cmake and README.md Update OpenCVDetectWebNN.cmake Fix OpenCVDetectWebNN.cmake and update README.md Add source webnn_cpp.cpp and libary libwebnn_proc.so Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp update dnn.cpp update op_webnn update op_webnn Update op_webnn.hpp update op_webnn.cpp & hpp Update op_webnn.hpp Update op_webnn update the skeleton Update op_webnn.cpp Update op_webnn Update op_webnn.cpp Update op_webnn.cpp Update op_webnn.hpp update op_webnn update op_webnn Solved the problems of released variables. Fixed the bugs in op_webnn.cpp Implement op_webnn Implement Relu by WebNN API Update dnn.cpp for better test Update elementwise_layers.cpp Implement ReLU6 Update elementwise_layers.cpp Implement SoftMax using WebNN API Implement Reshape by WebNN API Implement PermuteLayer by WebNN API Implement PoolingLayer using WebNN API Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Implement poolingLayer by WebNN API and add more detailed logs Update dnn.cpp Update dnn.cpp Remove redundant codes and add more logs for poolingLayer Add more logs in the pooling layer implementation Fix the indent issue and resolve the compiling issue Fix the build problems Fix the build issue FIx the build issue Update dnn.cpp Update dnn.cpp * Fix the build issue * Implement BatchNorm Layer by WebNN API * Update convolution_layer.cpp This is a temporary file for Conv2d layer implementation * Integrate some general functions into op_webnn.cpp&hpp * Update const_layer.cpp * Update convolution_layer.cpp Still have some bugs that should be fixed. * Update conv2d layer and fc layer still have some problems to be fixed. * update constLayer, conv layer, fc layer There are still some bugs to be fixed. * Fix the build issue * Update concat_layer.cpp Still have some bugs to be fixed. * Update conv2d layer, fully connected layer and const layer * Update convolution_layer.cpp * Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron) * Delete bib19450.aux * Add WebNN backend for OpenCV DNN Module Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp Add WebNN head files into OpenCV 3rd partiy files Create webnn.hpp update cmake Complete README and add OpenCVDetectWebNN.cmake file add webnn.cpp Modify webnn.cpp Can successfully compile the codes for creating a MLContext Update webnn.cpp Update README.md Update README.md Update README.md Update README.md Update cmake files and update README.md Update OpenCVDetectWebNN.cmake and README.md Update OpenCVDetectWebNN.cmake Fix OpenCVDetectWebNN.cmake and update README.md Add source webnn_cpp.cpp and libary libwebnn_proc.so Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp update dnn.cpp update op_webnn update op_webnn Update op_webnn.hpp update op_webnn.cpp & hpp Update op_webnn.hpp Update op_webnn update the skeleton Update op_webnn.cpp Update op_webnn Update op_webnn.cpp Update op_webnn.cpp Update op_webnn.hpp update op_webnn update op_webnn Solved the problems of released variables. Fixed the bugs in op_webnn.cpp Implement op_webnn Implement Relu by WebNN API Update dnn.cpp for better test Update elementwise_layers.cpp Implement ReLU6 Update elementwise_layers.cpp Implement SoftMax using WebNN API Implement Reshape by WebNN API Implement PermuteLayer by WebNN API Implement PoolingLayer using WebNN API Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Implement poolingLayer by WebNN API and add more detailed logs Update dnn.cpp Update dnn.cpp Remove redundant codes and add more logs for poolingLayer Add more logs in the pooling layer implementation Fix the indent issue and resolve the compiling issue Fix the build problems Fix the build issue FIx the build issue Update dnn.cpp Update dnn.cpp * Fix the build issue * Implement BatchNorm Layer by WebNN API * Update convolution_layer.cpp This is a temporary file for Conv2d layer implementation * Integrate some general functions into op_webnn.cpp&hpp * Update const_layer.cpp * Update convolution_layer.cpp Still have some bugs that should be fixed. * Update conv2d layer and fc layer still have some problems to be fixed. * update constLayer, conv layer, fc layer There are still some bugs to be fixed. * Update conv2d layer, fully connected layer and const layer * Update convolution_layer.cpp * Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron) * Update dnn.cpp * Fix Error in dnn.cpp * Resolve duplication in conditions in convolution_layer.cpp * Fixed the issues in the comments * Fix building issue * Update tutorial * Fixed comments * Address the comments * Update CMakeLists.txt * Offer more accurate perf test on native * Add better perf tests for both native and web * Modify per tests for better results * Use more latest version of Electron * Support latest WebNN Clamp op * Add definition of HAVE_WEBNN macro * Support group convolution * Implement Scale_layer using WebNN * Add Softmax option for native classification example * Fix comments * Fix comments
3 years ago
case DNN_BACKEND_WEBNN: *os << "WEBNN"; return;
} // don't use "default:" to emit compiler warnings
*os << "DNN_BACKEND_UNKNOWN(" << (int)v << ")";
}
void PrintTo(const cv::dnn::Target& v, std::ostream* os)
{
switch (v) {
case DNN_TARGET_CPU: *os << "CPU"; return;
case DNN_TARGET_OPENCL: *os << "OCL"; return;
case DNN_TARGET_OPENCL_FP16: *os << "OCL_FP16"; return;
case DNN_TARGET_MYRIAD: *os << "MYRIAD"; return;
case DNN_TARGET_HDDL: *os << "HDDL"; return;
case DNN_TARGET_VULKAN: *os << "VULKAN"; return;
case DNN_TARGET_FPGA: *os << "FPGA"; return;
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low CUDA backend for the DNN module * stub cuda4dnn design * minor fixes for tests and doxygen * add csl public api directory to module headers * add low-level CSL components * add high-level CSL components * integrate csl::Tensor into backbone code * switch to CPU iff unsupported; otherwise, fail on error * add fully connected layer * add softmax layer * add activation layers * support arbitary rank TensorDescriptor * pass input wrappers to `initCUDA()` * add 1d/2d/3d-convolution * add pooling layer * reorganize and refactor code * fixes for gcc, clang and doxygen; remove cxx14/17 code * add blank_layer * add LRN layer * add rounding modes for pooling layer * split tensor.hpp into tensor.hpp and tensor_ops.hpp * add concat layer * add scale layer * add batch normalization layer * split math.cu into activations.cu and math.hpp * add eltwise layer * add flatten layer * add tensor transform api * add asymmetric padding support for convolution layer * add reshape layer * fix rebase issues * add permute layer * add padding support for concat layer * refactor and reorganize code * add normalize layer * optimize bias addition in scale layer * add prior box layer * fix and optimize normalize layer * add asymmetric padding support for pooling layer * add event API * improve pooling performance for some padding scenarios * avoid over-allocation of compute resources to kernels * improve prior box performance * enable layer fusion * add const layer * add resize layer * add slice layer * add padding layer * add deconvolution layer * fix channelwise ReLU initialization * add vector traits * add vectorized versions of relu, clipped_relu, power * add vectorized concat kernels * improve concat_with_offsets performance * vectorize scale and bias kernels * add support for multi-billion element tensors * vectorize prior box kernels * fix address alignment check * improve bias addition performance of conv/deconv/fc layers * restructure code for supporting multiple targets * add DNN_TARGET_CUDA_FP64 * add DNN_TARGET_FP16 * improve vectorization * add region layer * improve tensor API, add dynamic ranks 1. use ManagedPtr instead of a Tensor in backend wrapper 2. add new methods to tensor classes - size_range: computes the combined size of for a given axis range - tensor span/view can be constructed from a raw pointer and shape 3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time) 4. remove device code from tensor classes (as they are unused) 5. enforce strict conditions on tensor class APIs to improve debugging ability * fix parametric relu activation * add squeeze/unsqueeze tensor API * add reorg layer * optimize permute and enable 2d permute * enable 1d and 2d slice * add split layer * add shuffle channel layer * allow tensors of different ranks in reshape primitive * patch SliceOp to allow Crop Layer * allow extra shape inputs in reshape layer * use `std::move_backward` instead of `std::move` for insert in resizable_static_array * improve workspace management * add spatial LRN * add nms (cpu) to region layer * add max pooling with argmax ( and a fix to limits.hpp) * add max unpooling layer * rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA * update supportBackend to be more rigorous * remove stray include from preventing non-cuda build * include op_cuda.hpp outside condition #if * refactoring, fixes and many optimizations * drop DNN_TARGET_CUDA_FP64 * fix gcc errors * increase max. tensor rank limit to six * add Interp layer * drop custom layers; use BackendNode * vectorize activation kernels * fixes for gcc * remove wrong assertion * fix broken assertion in unpooling primitive * fix build errors in non-CUDA build * completely remove workspace from public API * fix permute layer * enable accuracy and perf. tests for DNN_TARGET_CUDA * add asynchronous forward * vectorize eltwise ops * vectorize fill kernel * fixes for gcc * remove CSL headers from public API * remove csl header source group from cmake * update min. cudnn version in cmake * add numerically stable FP32 log1pexp * refactor code * add FP16 specialization to cudnn based tensor addition * vectorize scale1 and bias1 + minor refactoring * fix doxygen build * fix invalid alignment assertion * clear backend wrappers before allocateLayers * ignore memory lock failures * do not allocate internal blobs * integrate NVTX * add numerically stable half precision log1pexp * fix indentation, following coding style, improve docs * remove accidental modification of IE code * Revert "add asynchronous forward" This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70. * [cmake] throw error for unsupported CC versions * fix rebase issues * add more docs, refactor code, fix bugs * minor refactoring and fixes * resolve warnings/errors from clang * remove haveCUDA() checks from supportBackend() * remove NVTX integration * changes based on review comments * avoid exception when no CUDA device is present * add color code for CUDA in Net::dump
5 years ago
case DNN_TARGET_CUDA: *os << "CUDA"; return;
case DNN_TARGET_CUDA_FP16: *os << "CUDA_FP16"; return;
} // don't use "default:" to emit compiler warnings
*os << "DNN_TARGET_UNKNOWN(" << (int)v << ")";
}
void PrintTo(const tuple<cv::dnn::Backend, cv::dnn::Target> v, std::ostream* os)
{
PrintTo(get<0>(v), os);
*os << "/";
PrintTo(get<1>(v), os);
}
CV__DNN_INLINE_NS_END
}} // namespace
namespace opencv_test {
void normAssert(
cv::InputArray ref, cv::InputArray test, const char *comment /*= ""*/,
double l1 /*= 0.00001*/, double lInf /*= 0.0001*/)
{
double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
EXPECT_LE(normL1, l1) << comment << " |ref| = " << cvtest::norm(ref, cv::NORM_INF);
double normInf = cvtest::norm(ref, test, cv::NORM_INF);
EXPECT_LE(normInf, lInf) << comment << " |ref| = " << cvtest::norm(ref, cv::NORM_INF);
}
std::vector<cv::Rect2d> matToBoxes(const cv::Mat& m)
{
EXPECT_EQ(m.type(), CV_32FC1);
EXPECT_EQ(m.dims, 2);
EXPECT_EQ(m.cols, 4);
std::vector<cv::Rect2d> boxes(m.rows);
for (int i = 0; i < m.rows; ++i)
{
CV_Assert(m.row(i).isContinuous());
const float* data = m.ptr<float>(i);
double l = data[0], t = data[1], r = data[2], b = data[3];
boxes[i] = cv::Rect2d(l, t, r - l, b - t);
}
return boxes;
}
void normAssertDetections(
const std::vector<int>& refClassIds,
const std::vector<float>& refScores,
const std::vector<cv::Rect2d>& refBoxes,
const std::vector<int>& testClassIds,
const std::vector<float>& testScores,
const std::vector<cv::Rect2d>& testBoxes,
const char *comment /*= ""*/, double confThreshold /*= 0.0*/,
double scores_diff /*= 1e-5*/, double boxes_iou_diff /*= 1e-4*/)
{
ASSERT_FALSE(testClassIds.empty()) << "No detections";
std::vector<bool> matchedRefBoxes(refBoxes.size(), false);
std::vector<double> refBoxesIoUDiff(refBoxes.size(), 1.0);
for (int i = 0; i < testBoxes.size(); ++i)
{
//cout << "Test[i=" << i << "]: score=" << testScores[i] << " id=" << testClassIds[i] << " box " << testBoxes[i] << endl;
double testScore = testScores[i];
if (testScore < confThreshold)
continue;
int testClassId = testClassIds[i];
const cv::Rect2d& testBox = testBoxes[i];
bool matched = false;
double topIoU = 0;
for (int j = 0; j < refBoxes.size() && !matched; ++j)
{
if (!matchedRefBoxes[j] && testClassId == refClassIds[j] &&
std::abs(testScore - refScores[j]) < scores_diff)
{
double interArea = (testBox & refBoxes[j]).area();
double iou = interArea / (testBox.area() + refBoxes[j].area() - interArea);
topIoU = std::max(topIoU, iou);
refBoxesIoUDiff[j] = std::min(refBoxesIoUDiff[j], 1.0f - iou);
if (1.0 - iou < boxes_iou_diff)
{
matched = true;
matchedRefBoxes[j] = true;
}
}
}
if (!matched)
{
std::cout << cv::format("Unmatched prediction: class %d score %f box ",
testClassId, testScore) << testBox << std::endl;
std::cout << "Highest IoU: " << topIoU << std::endl;
}
EXPECT_TRUE(matched) << comment;
}
// Check unmatched reference detections.
for (int i = 0; i < refBoxes.size(); ++i)
{
if (!matchedRefBoxes[i] && refScores[i] > confThreshold)
{
std::cout << cv::format("Unmatched reference: class %d score %f box ",
refClassIds[i], refScores[i]) << refBoxes[i]
<< " IoU diff: " << refBoxesIoUDiff[i]
<< std::endl;
EXPECT_LE(refScores[i], confThreshold) << comment;
}
}
}
// For SSD-based object detection networks which produce output of shape 1x1xNx7
// where N is a number of detections and an every detection is represented by
// a vector [batchId, classId, confidence, left, top, right, bottom].
void normAssertDetections(
cv::Mat ref, cv::Mat out, const char *comment /*= ""*/,
double confThreshold /*= 0.0*/, double scores_diff /*= 1e-5*/,
double boxes_iou_diff /*= 1e-4*/)
{
CV_Assert(ref.total() % 7 == 0);
CV_Assert(out.total() % 7 == 0);
ref = ref.reshape(1, ref.total() / 7);
out = out.reshape(1, out.total() / 7);
cv::Mat refClassIds, testClassIds;
ref.col(1).convertTo(refClassIds, CV_32SC1);
out.col(1).convertTo(testClassIds, CV_32SC1);
std::vector<float> refScores(ref.col(2)), testScores(out.col(2));
std::vector<cv::Rect2d> refBoxes = matToBoxes(ref.colRange(3, 7));
std::vector<cv::Rect2d> testBoxes = matToBoxes(out.colRange(3, 7));
normAssertDetections(refClassIds, refScores, refBoxes, testClassIds, testScores,
testBoxes, comment, confThreshold, scores_diff, boxes_iou_diff);
}
// For text detection networks
// Curved text polygon is not supported in the current version.
// (concave polygon is invalid input to intersectConvexConvex)
void normAssertTextDetections(
const std::vector<std::vector<Point>>& gtPolys,
const std::vector<std::vector<Point>>& testPolys,
const char *comment /*= ""*/, double boxes_iou_diff /*= 1e-4*/)
{
std::vector<bool> matchedRefBoxes(gtPolys.size(), false);
for (uint i = 0; i < testPolys.size(); ++i)
{
const std::vector<Point>& testPoly = testPolys[i];
bool matched = false;
double topIoU = 0;
for (uint j = 0; j < gtPolys.size() && !matched; ++j)
{
if (!matchedRefBoxes[j])
{
std::vector<Point> intersectionPolygon;
float intersectArea = intersectConvexConvex(testPoly, gtPolys[j], intersectionPolygon, true);
double iou = intersectArea / (contourArea(testPoly) + contourArea(gtPolys[j]) - intersectArea);
topIoU = std::max(topIoU, iou);
if (1.0 - iou < boxes_iou_diff)
{
matched = true;
matchedRefBoxes[j] = true;
}
}
}
if (!matched) {
std::cout << cv::format("Unmatched-det:") << testPoly << std::endl;
std::cout << "Highest IoU: " << topIoU << std::endl;
}
EXPECT_TRUE(matched) << comment;
}
// Check unmatched groundtruth.
for (uint i = 0; i < gtPolys.size(); ++i)
{
if (!matchedRefBoxes[i]) {
std::cout << cv::format("Unmatched-gt:") << gtPolys[i] << std::endl;
}
EXPECT_TRUE(matchedRefBoxes[i]);
}
}
void readFileContent(const std::string& filename, CV_OUT std::vector<char>& content)
{
const std::ios::openmode mode = std::ios::in | std::ios::binary;
std::ifstream ifs(filename.c_str(), mode);
ASSERT_TRUE(ifs.is_open());
content.clear();
ifs.seekg(0, std::ios::end);
const size_t sz = ifs.tellg();
content.resize(sz);
ifs.seekg(0, std::ios::beg);
ifs.read((char*)content.data(), sz);
ASSERT_FALSE(ifs.fail());
}
testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargets(
bool withInferenceEngine /*= true*/,
bool withHalide /*= false*/,
bool withCpuOCV /*= true*/,
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low CUDA backend for the DNN module * stub cuda4dnn design * minor fixes for tests and doxygen * add csl public api directory to module headers * add low-level CSL components * add high-level CSL components * integrate csl::Tensor into backbone code * switch to CPU iff unsupported; otherwise, fail on error * add fully connected layer * add softmax layer * add activation layers * support arbitary rank TensorDescriptor * pass input wrappers to `initCUDA()` * add 1d/2d/3d-convolution * add pooling layer * reorganize and refactor code * fixes for gcc, clang and doxygen; remove cxx14/17 code * add blank_layer * add LRN layer * add rounding modes for pooling layer * split tensor.hpp into tensor.hpp and tensor_ops.hpp * add concat layer * add scale layer * add batch normalization layer * split math.cu into activations.cu and math.hpp * add eltwise layer * add flatten layer * add tensor transform api * add asymmetric padding support for convolution layer * add reshape layer * fix rebase issues * add permute layer * add padding support for concat layer * refactor and reorganize code * add normalize layer * optimize bias addition in scale layer * add prior box layer * fix and optimize normalize layer * add asymmetric padding support for pooling layer * add event API * improve pooling performance for some padding scenarios * avoid over-allocation of compute resources to kernels * improve prior box performance * enable layer fusion * add const layer * add resize layer * add slice layer * add padding layer * add deconvolution layer * fix channelwise ReLU initialization * add vector traits * add vectorized versions of relu, clipped_relu, power * add vectorized concat kernels * improve concat_with_offsets performance * vectorize scale and bias kernels * add support for multi-billion element tensors * vectorize prior box kernels * fix address alignment check * improve bias addition performance of conv/deconv/fc layers * restructure code for supporting multiple targets * add DNN_TARGET_CUDA_FP64 * add DNN_TARGET_FP16 * improve vectorization * add region layer * improve tensor API, add dynamic ranks 1. use ManagedPtr instead of a Tensor in backend wrapper 2. add new methods to tensor classes - size_range: computes the combined size of for a given axis range - tensor span/view can be constructed from a raw pointer and shape 3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time) 4. remove device code from tensor classes (as they are unused) 5. enforce strict conditions on tensor class APIs to improve debugging ability * fix parametric relu activation * add squeeze/unsqueeze tensor API * add reorg layer * optimize permute and enable 2d permute * enable 1d and 2d slice * add split layer * add shuffle channel layer * allow tensors of different ranks in reshape primitive * patch SliceOp to allow Crop Layer * allow extra shape inputs in reshape layer * use `std::move_backward` instead of `std::move` for insert in resizable_static_array * improve workspace management * add spatial LRN * add nms (cpu) to region layer * add max pooling with argmax ( and a fix to limits.hpp) * add max unpooling layer * rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA * update supportBackend to be more rigorous * remove stray include from preventing non-cuda build * include op_cuda.hpp outside condition #if * refactoring, fixes and many optimizations * drop DNN_TARGET_CUDA_FP64 * fix gcc errors * increase max. tensor rank limit to six * add Interp layer * drop custom layers; use BackendNode * vectorize activation kernels * fixes for gcc * remove wrong assertion * fix broken assertion in unpooling primitive * fix build errors in non-CUDA build * completely remove workspace from public API * fix permute layer * enable accuracy and perf. tests for DNN_TARGET_CUDA * add asynchronous forward * vectorize eltwise ops * vectorize fill kernel * fixes for gcc * remove CSL headers from public API * remove csl header source group from cmake * update min. cudnn version in cmake * add numerically stable FP32 log1pexp * refactor code * add FP16 specialization to cudnn based tensor addition * vectorize scale1 and bias1 + minor refactoring * fix doxygen build * fix invalid alignment assertion * clear backend wrappers before allocateLayers * ignore memory lock failures * do not allocate internal blobs * integrate NVTX * add numerically stable half precision log1pexp * fix indentation, following coding style, improve docs * remove accidental modification of IE code * Revert "add asynchronous forward" This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70. * [cmake] throw error for unsupported CC versions * fix rebase issues * add more docs, refactor code, fix bugs * minor refactoring and fixes * resolve warnings/errors from clang * remove haveCUDA() checks from supportBackend() * remove NVTX integration * changes based on review comments * avoid exception when no CUDA device is present * add color code for CUDA in Net::dump
5 years ago
bool withVkCom /*= true*/,
bool withCUDA /*= true*/,
Merge pull request #20406 from MarkGHX:gsoc_2021_webnn [GSoC] OpenCV.js: Accelerate OpenCV.js DNN via WebNN * Add WebNN backend for OpenCV DNN Module Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp Add WebNN head files into OpenCV 3rd partiy files Create webnn.hpp update cmake Complete README and add OpenCVDetectWebNN.cmake file add webnn.cpp Modify webnn.cpp Can successfully compile the codes for creating a MLContext Update webnn.cpp Update README.md Update README.md Update README.md Update README.md Update cmake files and update README.md Update OpenCVDetectWebNN.cmake and README.md Update OpenCVDetectWebNN.cmake Fix OpenCVDetectWebNN.cmake and update README.md Add source webnn_cpp.cpp and libary libwebnn_proc.so Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp update dnn.cpp update op_webnn update op_webnn Update op_webnn.hpp update op_webnn.cpp & hpp Update op_webnn.hpp Update op_webnn update the skeleton Update op_webnn.cpp Update op_webnn Update op_webnn.cpp Update op_webnn.cpp Update op_webnn.hpp update op_webnn update op_webnn Solved the problems of released variables. Fixed the bugs in op_webnn.cpp Implement op_webnn Implement Relu by WebNN API Update dnn.cpp for better test Update elementwise_layers.cpp Implement ReLU6 Update elementwise_layers.cpp Implement SoftMax using WebNN API Implement Reshape by WebNN API Implement PermuteLayer by WebNN API Implement PoolingLayer using WebNN API Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Implement poolingLayer by WebNN API and add more detailed logs Update dnn.cpp Update dnn.cpp Remove redundant codes and add more logs for poolingLayer Add more logs in the pooling layer implementation Fix the indent issue and resolve the compiling issue Fix the build problems Fix the build issue FIx the build issue Update dnn.cpp Update dnn.cpp * Fix the build issue * Implement BatchNorm Layer by WebNN API * Update convolution_layer.cpp This is a temporary file for Conv2d layer implementation * Integrate some general functions into op_webnn.cpp&hpp * Update const_layer.cpp * Update convolution_layer.cpp Still have some bugs that should be fixed. * Update conv2d layer and fc layer still have some problems to be fixed. * update constLayer, conv layer, fc layer There are still some bugs to be fixed. * Fix the build issue * Update concat_layer.cpp Still have some bugs to be fixed. * Update conv2d layer, fully connected layer and const layer * Update convolution_layer.cpp * Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron) * Delete bib19450.aux * Add WebNN backend for OpenCV DNN Module Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp Add WebNN head files into OpenCV 3rd partiy files Create webnn.hpp update cmake Complete README and add OpenCVDetectWebNN.cmake file add webnn.cpp Modify webnn.cpp Can successfully compile the codes for creating a MLContext Update webnn.cpp Update README.md Update README.md Update README.md Update README.md Update cmake files and update README.md Update OpenCVDetectWebNN.cmake and README.md Update OpenCVDetectWebNN.cmake Fix OpenCVDetectWebNN.cmake and update README.md Add source webnn_cpp.cpp and libary libwebnn_proc.so Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp update dnn.cpp update op_webnn update op_webnn Update op_webnn.hpp update op_webnn.cpp & hpp Update op_webnn.hpp Update op_webnn update the skeleton Update op_webnn.cpp Update op_webnn Update op_webnn.cpp Update op_webnn.cpp Update op_webnn.hpp update op_webnn update op_webnn Solved the problems of released variables. Fixed the bugs in op_webnn.cpp Implement op_webnn Implement Relu by WebNN API Update dnn.cpp for better test Update elementwise_layers.cpp Implement ReLU6 Update elementwise_layers.cpp Implement SoftMax using WebNN API Implement Reshape by WebNN API Implement PermuteLayer by WebNN API Implement PoolingLayer using WebNN API Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Implement poolingLayer by WebNN API and add more detailed logs Update dnn.cpp Update dnn.cpp Remove redundant codes and add more logs for poolingLayer Add more logs in the pooling layer implementation Fix the indent issue and resolve the compiling issue Fix the build problems Fix the build issue FIx the build issue Update dnn.cpp Update dnn.cpp * Fix the build issue * Implement BatchNorm Layer by WebNN API * Update convolution_layer.cpp This is a temporary file for Conv2d layer implementation * Integrate some general functions into op_webnn.cpp&hpp * Update const_layer.cpp * Update convolution_layer.cpp Still have some bugs that should be fixed. * Update conv2d layer and fc layer still have some problems to be fixed. * update constLayer, conv layer, fc layer There are still some bugs to be fixed. * Update conv2d layer, fully connected layer and const layer * Update convolution_layer.cpp * Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron) * Update dnn.cpp * Fix Error in dnn.cpp * Resolve duplication in conditions in convolution_layer.cpp * Fixed the issues in the comments * Fix building issue * Update tutorial * Fixed comments * Address the comments * Update CMakeLists.txt * Offer more accurate perf test on native * Add better perf tests for both native and web * Modify per tests for better results * Use more latest version of Electron * Support latest WebNN Clamp op * Add definition of HAVE_WEBNN macro * Support group convolution * Implement Scale_layer using WebNN * Add Softmax option for native classification example * Fix comments * Fix comments
3 years ago
bool withNgraph /*= true*/,
bool withWebnn /*= false*/
)
{
#ifdef HAVE_INF_ENGINE
bool withVPU = validateVPUType();
#endif
std::vector< tuple<Backend, Target> > targets;
std::vector< Target > available;
if (withHalide)
{
available = getAvailableTargets(DNN_BACKEND_HALIDE);
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
targets.push_back(make_tuple(DNN_BACKEND_HALIDE, *i));
}
#ifdef HAVE_INF_ENGINE
if (withInferenceEngine)
{
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019);
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
{
if ((*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) && !withVPU)
continue;
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, *i));
}
}
if (withNgraph)
{
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
{
if ((*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) && !withVPU)
continue;
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, *i));
}
}
#else
CV_UNUSED(withInferenceEngine);
#endif
if (withVkCom)
{
available = getAvailableTargets(DNN_BACKEND_VKCOM);
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
targets.push_back(make_tuple(DNN_BACKEND_VKCOM, *i));
}
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low CUDA backend for the DNN module * stub cuda4dnn design * minor fixes for tests and doxygen * add csl public api directory to module headers * add low-level CSL components * add high-level CSL components * integrate csl::Tensor into backbone code * switch to CPU iff unsupported; otherwise, fail on error * add fully connected layer * add softmax layer * add activation layers * support arbitary rank TensorDescriptor * pass input wrappers to `initCUDA()` * add 1d/2d/3d-convolution * add pooling layer * reorganize and refactor code * fixes for gcc, clang and doxygen; remove cxx14/17 code * add blank_layer * add LRN layer * add rounding modes for pooling layer * split tensor.hpp into tensor.hpp and tensor_ops.hpp * add concat layer * add scale layer * add batch normalization layer * split math.cu into activations.cu and math.hpp * add eltwise layer * add flatten layer * add tensor transform api * add asymmetric padding support for convolution layer * add reshape layer * fix rebase issues * add permute layer * add padding support for concat layer * refactor and reorganize code * add normalize layer * optimize bias addition in scale layer * add prior box layer * fix and optimize normalize layer * add asymmetric padding support for pooling layer * add event API * improve pooling performance for some padding scenarios * avoid over-allocation of compute resources to kernels * improve prior box performance * enable layer fusion * add const layer * add resize layer * add slice layer * add padding layer * add deconvolution layer * fix channelwise ReLU initialization * add vector traits * add vectorized versions of relu, clipped_relu, power * add vectorized concat kernels * improve concat_with_offsets performance * vectorize scale and bias kernels * add support for multi-billion element tensors * vectorize prior box kernels * fix address alignment check * improve bias addition performance of conv/deconv/fc layers * restructure code for supporting multiple targets * add DNN_TARGET_CUDA_FP64 * add DNN_TARGET_FP16 * improve vectorization * add region layer * improve tensor API, add dynamic ranks 1. use ManagedPtr instead of a Tensor in backend wrapper 2. add new methods to tensor classes - size_range: computes the combined size of for a given axis range - tensor span/view can be constructed from a raw pointer and shape 3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time) 4. remove device code from tensor classes (as they are unused) 5. enforce strict conditions on tensor class APIs to improve debugging ability * fix parametric relu activation * add squeeze/unsqueeze tensor API * add reorg layer * optimize permute and enable 2d permute * enable 1d and 2d slice * add split layer * add shuffle channel layer * allow tensors of different ranks in reshape primitive * patch SliceOp to allow Crop Layer * allow extra shape inputs in reshape layer * use `std::move_backward` instead of `std::move` for insert in resizable_static_array * improve workspace management * add spatial LRN * add nms (cpu) to region layer * add max pooling with argmax ( and a fix to limits.hpp) * add max unpooling layer * rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA * update supportBackend to be more rigorous * remove stray include from preventing non-cuda build * include op_cuda.hpp outside condition #if * refactoring, fixes and many optimizations * drop DNN_TARGET_CUDA_FP64 * fix gcc errors * increase max. tensor rank limit to six * add Interp layer * drop custom layers; use BackendNode * vectorize activation kernels * fixes for gcc * remove wrong assertion * fix broken assertion in unpooling primitive * fix build errors in non-CUDA build * completely remove workspace from public API * fix permute layer * enable accuracy and perf. tests for DNN_TARGET_CUDA * add asynchronous forward * vectorize eltwise ops * vectorize fill kernel * fixes for gcc * remove CSL headers from public API * remove csl header source group from cmake * update min. cudnn version in cmake * add numerically stable FP32 log1pexp * refactor code * add FP16 specialization to cudnn based tensor addition * vectorize scale1 and bias1 + minor refactoring * fix doxygen build * fix invalid alignment assertion * clear backend wrappers before allocateLayers * ignore memory lock failures * do not allocate internal blobs * integrate NVTX * add numerically stable half precision log1pexp * fix indentation, following coding style, improve docs * remove accidental modification of IE code * Revert "add asynchronous forward" This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70. * [cmake] throw error for unsupported CC versions * fix rebase issues * add more docs, refactor code, fix bugs * minor refactoring and fixes * resolve warnings/errors from clang * remove haveCUDA() checks from supportBackend() * remove NVTX integration * changes based on review comments * avoid exception when no CUDA device is present * add color code for CUDA in Net::dump
5 years ago
#ifdef HAVE_CUDA
if(withCUDA)
{
for (auto target : getAvailableTargets(DNN_BACKEND_CUDA))
targets.push_back(make_tuple(DNN_BACKEND_CUDA, target));
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low CUDA backend for the DNN module * stub cuda4dnn design * minor fixes for tests and doxygen * add csl public api directory to module headers * add low-level CSL components * add high-level CSL components * integrate csl::Tensor into backbone code * switch to CPU iff unsupported; otherwise, fail on error * add fully connected layer * add softmax layer * add activation layers * support arbitary rank TensorDescriptor * pass input wrappers to `initCUDA()` * add 1d/2d/3d-convolution * add pooling layer * reorganize and refactor code * fixes for gcc, clang and doxygen; remove cxx14/17 code * add blank_layer * add LRN layer * add rounding modes for pooling layer * split tensor.hpp into tensor.hpp and tensor_ops.hpp * add concat layer * add scale layer * add batch normalization layer * split math.cu into activations.cu and math.hpp * add eltwise layer * add flatten layer * add tensor transform api * add asymmetric padding support for convolution layer * add reshape layer * fix rebase issues * add permute layer * add padding support for concat layer * refactor and reorganize code * add normalize layer * optimize bias addition in scale layer * add prior box layer * fix and optimize normalize layer * add asymmetric padding support for pooling layer * add event API * improve pooling performance for some padding scenarios * avoid over-allocation of compute resources to kernels * improve prior box performance * enable layer fusion * add const layer * add resize layer * add slice layer * add padding layer * add deconvolution layer * fix channelwise ReLU initialization * add vector traits * add vectorized versions of relu, clipped_relu, power * add vectorized concat kernels * improve concat_with_offsets performance * vectorize scale and bias kernels * add support for multi-billion element tensors * vectorize prior box kernels * fix address alignment check * improve bias addition performance of conv/deconv/fc layers * restructure code for supporting multiple targets * add DNN_TARGET_CUDA_FP64 * add DNN_TARGET_FP16 * improve vectorization * add region layer * improve tensor API, add dynamic ranks 1. use ManagedPtr instead of a Tensor in backend wrapper 2. add new methods to tensor classes - size_range: computes the combined size of for a given axis range - tensor span/view can be constructed from a raw pointer and shape 3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time) 4. remove device code from tensor classes (as they are unused) 5. enforce strict conditions on tensor class APIs to improve debugging ability * fix parametric relu activation * add squeeze/unsqueeze tensor API * add reorg layer * optimize permute and enable 2d permute * enable 1d and 2d slice * add split layer * add shuffle channel layer * allow tensors of different ranks in reshape primitive * patch SliceOp to allow Crop Layer * allow extra shape inputs in reshape layer * use `std::move_backward` instead of `std::move` for insert in resizable_static_array * improve workspace management * add spatial LRN * add nms (cpu) to region layer * add max pooling with argmax ( and a fix to limits.hpp) * add max unpooling layer * rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA * update supportBackend to be more rigorous * remove stray include from preventing non-cuda build * include op_cuda.hpp outside condition #if * refactoring, fixes and many optimizations * drop DNN_TARGET_CUDA_FP64 * fix gcc errors * increase max. tensor rank limit to six * add Interp layer * drop custom layers; use BackendNode * vectorize activation kernels * fixes for gcc * remove wrong assertion * fix broken assertion in unpooling primitive * fix build errors in non-CUDA build * completely remove workspace from public API * fix permute layer * enable accuracy and perf. tests for DNN_TARGET_CUDA * add asynchronous forward * vectorize eltwise ops * vectorize fill kernel * fixes for gcc * remove CSL headers from public API * remove csl header source group from cmake * update min. cudnn version in cmake * add numerically stable FP32 log1pexp * refactor code * add FP16 specialization to cudnn based tensor addition * vectorize scale1 and bias1 + minor refactoring * fix doxygen build * fix invalid alignment assertion * clear backend wrappers before allocateLayers * ignore memory lock failures * do not allocate internal blobs * integrate NVTX * add numerically stable half precision log1pexp * fix indentation, following coding style, improve docs * remove accidental modification of IE code * Revert "add asynchronous forward" This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70. * [cmake] throw error for unsupported CC versions * fix rebase issues * add more docs, refactor code, fix bugs * minor refactoring and fixes * resolve warnings/errors from clang * remove haveCUDA() checks from supportBackend() * remove NVTX integration * changes based on review comments * avoid exception when no CUDA device is present * add color code for CUDA in Net::dump
5 years ago
}
#endif
Merge pull request #20406 from MarkGHX:gsoc_2021_webnn [GSoC] OpenCV.js: Accelerate OpenCV.js DNN via WebNN * Add WebNN backend for OpenCV DNN Module Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp Add WebNN head files into OpenCV 3rd partiy files Create webnn.hpp update cmake Complete README and add OpenCVDetectWebNN.cmake file add webnn.cpp Modify webnn.cpp Can successfully compile the codes for creating a MLContext Update webnn.cpp Update README.md Update README.md Update README.md Update README.md Update cmake files and update README.md Update OpenCVDetectWebNN.cmake and README.md Update OpenCVDetectWebNN.cmake Fix OpenCVDetectWebNN.cmake and update README.md Add source webnn_cpp.cpp and libary libwebnn_proc.so Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp update dnn.cpp update op_webnn update op_webnn Update op_webnn.hpp update op_webnn.cpp & hpp Update op_webnn.hpp Update op_webnn update the skeleton Update op_webnn.cpp Update op_webnn Update op_webnn.cpp Update op_webnn.cpp Update op_webnn.hpp update op_webnn update op_webnn Solved the problems of released variables. Fixed the bugs in op_webnn.cpp Implement op_webnn Implement Relu by WebNN API Update dnn.cpp for better test Update elementwise_layers.cpp Implement ReLU6 Update elementwise_layers.cpp Implement SoftMax using WebNN API Implement Reshape by WebNN API Implement PermuteLayer by WebNN API Implement PoolingLayer using WebNN API Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Implement poolingLayer by WebNN API and add more detailed logs Update dnn.cpp Update dnn.cpp Remove redundant codes and add more logs for poolingLayer Add more logs in the pooling layer implementation Fix the indent issue and resolve the compiling issue Fix the build problems Fix the build issue FIx the build issue Update dnn.cpp Update dnn.cpp * Fix the build issue * Implement BatchNorm Layer by WebNN API * Update convolution_layer.cpp This is a temporary file for Conv2d layer implementation * Integrate some general functions into op_webnn.cpp&hpp * Update const_layer.cpp * Update convolution_layer.cpp Still have some bugs that should be fixed. * Update conv2d layer and fc layer still have some problems to be fixed. * update constLayer, conv layer, fc layer There are still some bugs to be fixed. * Fix the build issue * Update concat_layer.cpp Still have some bugs to be fixed. * Update conv2d layer, fully connected layer and const layer * Update convolution_layer.cpp * Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron) * Delete bib19450.aux * Add WebNN backend for OpenCV DNN Module Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp Add WebNN head files into OpenCV 3rd partiy files Create webnn.hpp update cmake Complete README and add OpenCVDetectWebNN.cmake file add webnn.cpp Modify webnn.cpp Can successfully compile the codes for creating a MLContext Update webnn.cpp Update README.md Update README.md Update README.md Update README.md Update cmake files and update README.md Update OpenCVDetectWebNN.cmake and README.md Update OpenCVDetectWebNN.cmake Fix OpenCVDetectWebNN.cmake and update README.md Add source webnn_cpp.cpp and libary libwebnn_proc.so Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp update dnn.cpp update op_webnn update op_webnn Update op_webnn.hpp update op_webnn.cpp & hpp Update op_webnn.hpp Update op_webnn update the skeleton Update op_webnn.cpp Update op_webnn Update op_webnn.cpp Update op_webnn.cpp Update op_webnn.hpp update op_webnn update op_webnn Solved the problems of released variables. Fixed the bugs in op_webnn.cpp Implement op_webnn Implement Relu by WebNN API Update dnn.cpp for better test Update elementwise_layers.cpp Implement ReLU6 Update elementwise_layers.cpp Implement SoftMax using WebNN API Implement Reshape by WebNN API Implement PermuteLayer by WebNN API Implement PoolingLayer using WebNN API Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Implement poolingLayer by WebNN API and add more detailed logs Update dnn.cpp Update dnn.cpp Remove redundant codes and add more logs for poolingLayer Add more logs in the pooling layer implementation Fix the indent issue and resolve the compiling issue Fix the build problems Fix the build issue FIx the build issue Update dnn.cpp Update dnn.cpp * Fix the build issue * Implement BatchNorm Layer by WebNN API * Update convolution_layer.cpp This is a temporary file for Conv2d layer implementation * Integrate some general functions into op_webnn.cpp&hpp * Update const_layer.cpp * Update convolution_layer.cpp Still have some bugs that should be fixed. * Update conv2d layer and fc layer still have some problems to be fixed. * update constLayer, conv layer, fc layer There are still some bugs to be fixed. * Update conv2d layer, fully connected layer and const layer * Update convolution_layer.cpp * Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron) * Update dnn.cpp * Fix Error in dnn.cpp * Resolve duplication in conditions in convolution_layer.cpp * Fixed the issues in the comments * Fix building issue * Update tutorial * Fixed comments * Address the comments * Update CMakeLists.txt * Offer more accurate perf test on native * Add better perf tests for both native and web * Modify per tests for better results * Use more latest version of Electron * Support latest WebNN Clamp op * Add definition of HAVE_WEBNN macro * Support group convolution * Implement Scale_layer using WebNN * Add Softmax option for native classification example * Fix comments * Fix comments
3 years ago
#ifdef HAVE_WEBNN
if (withWebnn)
{
for (auto target : getAvailableTargets(DNN_BACKEND_WEBNN)) {
targets.push_back(make_tuple(DNN_BACKEND_WEBNN, target));
}
}
#else
CV_UNUSED(withWebnn);
#endif
{
available = getAvailableTargets(DNN_BACKEND_OPENCV);
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
{
if (!withCpuOCV && *i == DNN_TARGET_CPU)
continue;
targets.push_back(make_tuple(DNN_BACKEND_OPENCV, *i));
}
}
if (targets.empty()) // validate at least CPU mode
targets.push_back(make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU));
return testing::ValuesIn(targets);
}
testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargetsIE()
{
#ifdef HAVE_INF_ENGINE
bool withVPU = validateVPUType();
std::vector< tuple<Backend, Target> > targets;
std::vector< Target > available;
{
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019);
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
{
if ((*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) && !withVPU)
continue;
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, *i));
}
}
{
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
{
if ((*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) && !withVPU)
continue;
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, *i));
}
}
return testing::ValuesIn(targets);
#else
return testing::ValuesIn(std::vector< tuple<Backend, Target> >());
#endif
}
#ifdef HAVE_INF_ENGINE
static std::string getTestInferenceEngineVPUType()
{
static std::string param_vpu_type = utils::getConfigurationParameterString("OPENCV_TEST_DNN_IE_VPU_TYPE", "");
return param_vpu_type;
}
static bool validateVPUType_()
{
std::string test_vpu_type = getTestInferenceEngineVPUType();
if (test_vpu_type == "DISABLED" || test_vpu_type == "disabled")
{
return false;
}
std::vector<Target> available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE);
bool have_vpu_target = false;
for (std::vector<Target>::const_iterator i = available.begin(); i != available.end(); ++i)
{
if (*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL)
{
have_vpu_target = true;
break;
}
}
if (test_vpu_type.empty())
{
if (have_vpu_target)
{
CV_LOG_INFO(NULL, "OpenCV-DNN-Test: VPU type for testing is not specified via 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter.")
}
}
else
{
if (!have_vpu_target)
{
CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter requires VPU of type = '" << test_vpu_type << "', but VPU is not detected. STOP.");
exit(1);
}
std::string dnn_vpu_type = getInferenceEngineVPUType();
if (dnn_vpu_type != test_vpu_type)
{
CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'testing' and 'detected' VPU types mismatch: '" << test_vpu_type << "' vs '" << dnn_vpu_type << "'. STOP.");
exit(1);
}
}
if (have_vpu_target)
{
std::string dnn_vpu_type = getInferenceEngineVPUType();
if (dnn_vpu_type == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2)
registerGlobalSkipTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2);
if (dnn_vpu_type == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
registerGlobalSkipTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
}
return true;
}
bool validateVPUType()
{
static bool result = validateVPUType_();
return result;
}
#endif // HAVE_INF_ENGINE
void initDNNTests()
{
const char* extraTestDataPath =
#ifdef WINRT
NULL;
#else
getenv("OPENCV_DNN_TEST_DATA_PATH");
#endif
if (extraTestDataPath)
cvtest::addDataSearchPath(extraTestDataPath);
registerGlobalSkipTag(
CV_TEST_TAG_DNN_SKIP_HALIDE,
CV_TEST_TAG_DNN_SKIP_OPENCL, CV_TEST_TAG_DNN_SKIP_OPENCL_FP16
);
#if defined(INF_ENGINE_RELEASE)
registerGlobalSkipTag(
CV_TEST_TAG_DNN_SKIP_IE,
#if INF_ENGINE_VER_MAJOR_EQ(2018050000)
CV_TEST_TAG_DNN_SKIP_IE_2018R5,
#elif INF_ENGINE_VER_MAJOR_EQ(2019010000)
CV_TEST_TAG_DNN_SKIP_IE_2019R1,
# if INF_ENGINE_RELEASE == 2019010100
CV_TEST_TAG_DNN_SKIP_IE_2019R1_1,
# endif
#elif INF_ENGINE_VER_MAJOR_EQ(2019020000)
CV_TEST_TAG_DNN_SKIP_IE_2019R2,
#elif INF_ENGINE_VER_MAJOR_EQ(2019030000)
CV_TEST_TAG_DNN_SKIP_IE_2019R3,
#endif
#ifdef HAVE_DNN_NGRAPH
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH,
#endif
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER,
#endif
CV_TEST_TAG_DNN_SKIP_IE_CPU
);
registerGlobalSkipTag(
// see validateVPUType(): CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2, CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X
CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16
);
#endif
#ifdef HAVE_VULKAN
registerGlobalSkipTag(
CV_TEST_TAG_DNN_SKIP_VULKAN
);
#endif
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low CUDA backend for the DNN module * stub cuda4dnn design * minor fixes for tests and doxygen * add csl public api directory to module headers * add low-level CSL components * add high-level CSL components * integrate csl::Tensor into backbone code * switch to CPU iff unsupported; otherwise, fail on error * add fully connected layer * add softmax layer * add activation layers * support arbitary rank TensorDescriptor * pass input wrappers to `initCUDA()` * add 1d/2d/3d-convolution * add pooling layer * reorganize and refactor code * fixes for gcc, clang and doxygen; remove cxx14/17 code * add blank_layer * add LRN layer * add rounding modes for pooling layer * split tensor.hpp into tensor.hpp and tensor_ops.hpp * add concat layer * add scale layer * add batch normalization layer * split math.cu into activations.cu and math.hpp * add eltwise layer * add flatten layer * add tensor transform api * add asymmetric padding support for convolution layer * add reshape layer * fix rebase issues * add permute layer * add padding support for concat layer * refactor and reorganize code * add normalize layer * optimize bias addition in scale layer * add prior box layer * fix and optimize normalize layer * add asymmetric padding support for pooling layer * add event API * improve pooling performance for some padding scenarios * avoid over-allocation of compute resources to kernels * improve prior box performance * enable layer fusion * add const layer * add resize layer * add slice layer * add padding layer * add deconvolution layer * fix channelwise ReLU initialization * add vector traits * add vectorized versions of relu, clipped_relu, power * add vectorized concat kernels * improve concat_with_offsets performance * vectorize scale and bias kernels * add support for multi-billion element tensors * vectorize prior box kernels * fix address alignment check * improve bias addition performance of conv/deconv/fc layers * restructure code for supporting multiple targets * add DNN_TARGET_CUDA_FP64 * add DNN_TARGET_FP16 * improve vectorization * add region layer * improve tensor API, add dynamic ranks 1. use ManagedPtr instead of a Tensor in backend wrapper 2. add new methods to tensor classes - size_range: computes the combined size of for a given axis range - tensor span/view can be constructed from a raw pointer and shape 3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time) 4. remove device code from tensor classes (as they are unused) 5. enforce strict conditions on tensor class APIs to improve debugging ability * fix parametric relu activation * add squeeze/unsqueeze tensor API * add reorg layer * optimize permute and enable 2d permute * enable 1d and 2d slice * add split layer * add shuffle channel layer * allow tensors of different ranks in reshape primitive * patch SliceOp to allow Crop Layer * allow extra shape inputs in reshape layer * use `std::move_backward` instead of `std::move` for insert in resizable_static_array * improve workspace management * add spatial LRN * add nms (cpu) to region layer * add max pooling with argmax ( and a fix to limits.hpp) * add max unpooling layer * rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA * update supportBackend to be more rigorous * remove stray include from preventing non-cuda build * include op_cuda.hpp outside condition #if * refactoring, fixes and many optimizations * drop DNN_TARGET_CUDA_FP64 * fix gcc errors * increase max. tensor rank limit to six * add Interp layer * drop custom layers; use BackendNode * vectorize activation kernels * fixes for gcc * remove wrong assertion * fix broken assertion in unpooling primitive * fix build errors in non-CUDA build * completely remove workspace from public API * fix permute layer * enable accuracy and perf. tests for DNN_TARGET_CUDA * add asynchronous forward * vectorize eltwise ops * vectorize fill kernel * fixes for gcc * remove CSL headers from public API * remove csl header source group from cmake * update min. cudnn version in cmake * add numerically stable FP32 log1pexp * refactor code * add FP16 specialization to cudnn based tensor addition * vectorize scale1 and bias1 + minor refactoring * fix doxygen build * fix invalid alignment assertion * clear backend wrappers before allocateLayers * ignore memory lock failures * do not allocate internal blobs * integrate NVTX * add numerically stable half precision log1pexp * fix indentation, following coding style, improve docs * remove accidental modification of IE code * Revert "add asynchronous forward" This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70. * [cmake] throw error for unsupported CC versions * fix rebase issues * add more docs, refactor code, fix bugs * minor refactoring and fixes * resolve warnings/errors from clang * remove haveCUDA() checks from supportBackend() * remove NVTX integration * changes based on review comments * avoid exception when no CUDA device is present * add color code for CUDA in Net::dump
5 years ago
#ifdef HAVE_CUDA
registerGlobalSkipTag(
CV_TEST_TAG_DNN_SKIP_CUDA, CV_TEST_TAG_DNN_SKIP_CUDA_FP32, CV_TEST_TAG_DNN_SKIP_CUDA_FP16
);
#endif
}
} // namespace