|
|
|
#!/usr/bin/env python
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import cv2 as cv
|
|
|
|
|
|
|
|
from tests_common import NewOpenCVTests
|
|
|
|
|
|
|
|
class Bindings(NewOpenCVTests):
|
|
|
|
|
|
|
|
def test_inheritance(self):
|
|
|
|
bm = cv.StereoBM_create()
|
|
|
|
bm.getPreFilterCap() # from StereoBM
|
|
|
|
bm.getBlockSize() # from SteroMatcher
|
|
|
|
|
|
|
|
boost = cv.ml.Boost_create()
|
|
|
|
boost.getBoostType() # from ml::Boost
|
|
|
|
boost.getMaxDepth() # from ml::DTrees
|
|
|
|
boost.isClassifier() # from ml::StatModel
|
|
|
|
|
|
|
|
|
|
|
|
def test_redirectError(self):
|
|
|
|
try:
|
|
|
|
cv.imshow("", None) # This causes an assert
|
|
|
|
self.assertEqual("Dead code", 0)
|
|
|
|
except cv.error as _e:
|
|
|
|
pass
|
|
|
|
|
|
|
|
handler_called = [False]
|
|
|
|
def test_error_handler(status, func_name, err_msg, file_name, line):
|
|
|
|
handler_called[0] = True
|
|
|
|
|
|
|
|
cv.redirectError(test_error_handler)
|
|
|
|
try:
|
|
|
|
cv.imshow("", None) # This causes an assert
|
|
|
|
self.assertEqual("Dead code", 0)
|
|
|
|
except cv.error as _e:
|
|
|
|
self.assertEqual(handler_called[0], True)
|
|
|
|
pass
|
|
|
|
|
|
|
|
cv.redirectError(None)
|
|
|
|
try:
|
|
|
|
cv.imshow("", None) # This causes an assert
|
|
|
|
self.assertEqual("Dead code", 0)
|
|
|
|
except cv.error as _e:
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class Arguments(NewOpenCVTests):
|
|
|
|
|
|
|
|
def test_InputArray(self):
|
|
|
|
res1 = cv.utils.dumpInputArray(None)
|
|
|
|
#self.assertEqual(res1, "InputArray: noArray()") # not supported
|
|
|
|
self.assertEqual(res1, "InputArray: empty()=true kind=0x00010000 flags=0x01010000 total(-1)=0 dims(-1)=0 size(-1)=0x0 type(-1)=CV_8UC1")
|
|
|
|
res2_1 = cv.utils.dumpInputArray((1, 2))
|
|
|
|
self.assertEqual(res2_1, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=2 dims(-1)=2 size(-1)=1x2 type(-1)=CV_64FC1")
|
|
|
|
res2_2 = cv.utils.dumpInputArray(1.5) # Scalar(1.5, 1.5, 1.5, 1.5)
|
|
|
|
self.assertEqual(res2_2, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=4 dims(-1)=2 size(-1)=1x4 type(-1)=CV_64FC1")
|
|
|
|
a = np.array([[1,2],[3,4],[5,6]])
|
|
|
|
res3 = cv.utils.dumpInputArray(a) # 32SC1
|
|
|
|
self.assertEqual(res3, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=6 dims(-1)=2 size(-1)=2x3 type(-1)=CV_32SC1")
|
|
|
|
a = np.array([[[1,2],[3,4],[5,6]]], dtype='f')
|
|
|
|
res4 = cv.utils.dumpInputArray(a) # 32FC2
|
|
|
|
self.assertEqual(res4, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=3 dims(-1)=2 size(-1)=3x1 type(-1)=CV_32FC2")
|
|
|
|
a = np.array([[[1,2]],[[3,4]],[[5,6]]], dtype=float)
|
|
|
|
res5 = cv.utils.dumpInputArray(a) # 64FC2
|
|
|
|
self.assertEqual(res5, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=3 dims(-1)=2 size(-1)=1x3 type(-1)=CV_64FC2")
|
|
|
|
|
|
|
|
|
|
|
|
def test_InputArrayOfArrays(self):
|
|
|
|
res1 = cv.utils.dumpInputArrayOfArrays(None)
|
|
|
|
#self.assertEqual(res1, "InputArray: noArray()") # not supported
|
|
|
|
self.assertEqual(res1, "InputArrayOfArrays: empty()=true kind=0x00050000 flags=0x01050000 total(-1)=0 dims(-1)=1 size(-1)=0x0")
|
|
|
|
res2_1 = cv.utils.dumpInputArrayOfArrays((1, 2)) # { Scalar:all(1), Scalar::all(2) }
|
|
|
|
self.assertEqual(res2_1, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=2 dims(-1)=1 size(-1)=2x1 type(0)=CV_64FC1 dims(0)=2 size(0)=1x4 type(0)=CV_64FC1")
|
|
|
|
res2_2 = cv.utils.dumpInputArrayOfArrays([1.5])
|
|
|
|
self.assertEqual(res2_2, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=1 dims(-1)=1 size(-1)=1x1 type(0)=CV_64FC1 dims(0)=2 size(0)=1x4 type(0)=CV_64FC1")
|
|
|
|
a = np.array([[1,2],[3,4],[5,6]])
|
|
|
|
b = np.array([[1,2,3],[4,5,6],[7,8,9]])
|
|
|
|
res3 = cv.utils.dumpInputArrayOfArrays([a, b])
|
|
|
|
self.assertEqual(res3, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=2 dims(-1)=1 size(-1)=2x1 type(0)=CV_32SC1 dims(0)=2 size(0)=2x3 type(0)=CV_32SC1")
|
|
|
|
c = np.array([[[1,2],[3,4],[5,6]]], dtype='f')
|
|
|
|
res4 = cv.utils.dumpInputArrayOfArrays([c, a, b])
|
|
|
|
self.assertEqual(res4, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=3 dims(-1)=1 size(-1)=3x1 type(0)=CV_32FC2 dims(0)=2 size(0)=3x1 type(0)=CV_32FC2")
|
|
|
|
|
|
|
|
|
|
|
|
class SamplesFindFile(NewOpenCVTests):
|
|
|
|
|
|
|
|
def test_ExistedFile(self):
|
|
|
|
res = cv.samples.findFile('lena.jpg', False)
|
|
|
|
self.assertNotEqual(res, '')
|
|
|
|
|
|
|
|
def test_MissingFile(self):
|
|
|
|
res = cv.samples.findFile('non_existed.file', False)
|
|
|
|
self.assertEqual(res, '')
|
|
|
|
|
|
|
|
def test_MissingFileException(self):
|
|
|
|
try:
|
|
|
|
_res = cv.samples.findFile('non_existed.file', True)
|
|
|
|
self.assertEqual("Dead code", 0)
|
|
|
|
except cv.error as _e:
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
NewOpenCVTests.bootstrap()
|