|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <iterator>
|
|
|
|
#include <limits>
|
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
|
|
|
|
int RANSACUpdateNumIters( double p, double ep, int modelPoints, int maxIters )
|
|
|
|
{
|
|
|
|
if( modelPoints <= 0 )
|
|
|
|
CV_Error( Error::StsOutOfRange, "the number of model points should be positive" );
|
|
|
|
|
|
|
|
p = MAX(p, 0.);
|
|
|
|
p = MIN(p, 1.);
|
|
|
|
ep = MAX(ep, 0.);
|
|
|
|
ep = MIN(ep, 1.);
|
|
|
|
|
|
|
|
// avoid inf's & nan's
|
|
|
|
double num = MAX(1. - p, DBL_MIN);
|
|
|
|
double denom = 1. - std::pow(1. - ep, modelPoints);
|
|
|
|
if( denom < DBL_MIN )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
num = std::log(num);
|
|
|
|
denom = std::log(denom);
|
|
|
|
|
|
|
|
return denom >= 0 || -num >= maxIters*(-denom) ? maxIters : cvRound(num/denom);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class RANSACPointSetRegistrator : public PointSetRegistrator
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
RANSACPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb=Ptr<PointSetRegistrator::Callback>(),
|
|
|
|
int _modelPoints=0, double _threshold=0, double _confidence=0.99, int _maxIters=1000)
|
|
|
|
: cb(_cb), modelPoints(_modelPoints), threshold(_threshold), confidence(_confidence), maxIters(_maxIters)
|
|
|
|
{
|
|
|
|
checkPartialSubsets = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
int findInliers( const Mat& m1, const Mat& m2, const Mat& model, Mat& err, Mat& mask, double thresh ) const
|
|
|
|
{
|
|
|
|
cb->computeError( m1, m2, model, err );
|
|
|
|
mask.create(err.size(), CV_8U);
|
|
|
|
|
|
|
|
CV_Assert( err.isContinuous() && err.type() == CV_32F && mask.isContinuous() && mask.type() == CV_8U);
|
|
|
|
const float* errptr = err.ptr<float>();
|
|
|
|
uchar* maskptr = mask.ptr<uchar>();
|
|
|
|
float t = (float)(thresh*thresh);
|
|
|
|
int i, n = (int)err.total(), nz = 0;
|
|
|
|
for( i = 0; i < n; i++ )
|
|
|
|
{
|
|
|
|
int f = errptr[i] <= t;
|
|
|
|
maskptr[i] = (uchar)f;
|
|
|
|
nz += f;
|
|
|
|
}
|
|
|
|
return nz;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool getSubset( const Mat& m1, const Mat& m2,
|
|
|
|
Mat& ms1, Mat& ms2, RNG& rng,
|
|
|
|
int maxAttempts=1000 ) const
|
|
|
|
{
|
|
|
|
cv::AutoBuffer<int> _idx(modelPoints);
|
|
|
|
int* idx = _idx;
|
|
|
|
int i = 0, j, k, iters = 0;
|
|
|
|
int d1 = m1.channels() > 1 ? m1.channels() : m1.cols;
|
|
|
|
int d2 = m2.channels() > 1 ? m2.channels() : m2.cols;
|
|
|
|
int esz1 = (int)m1.elemSize1()*d1, esz2 = (int)m2.elemSize1()*d2;
|
|
|
|
int count = m1.checkVector(d1), count2 = m2.checkVector(d2);
|
|
|
|
const int *m1ptr = m1.ptr<int>(), *m2ptr = m2.ptr<int>();
|
|
|
|
|
|
|
|
ms1.create(modelPoints, 1, CV_MAKETYPE(m1.depth(), d1));
|
|
|
|
ms2.create(modelPoints, 1, CV_MAKETYPE(m2.depth(), d2));
|
|
|
|
|
|
|
|
int *ms1ptr = ms1.ptr<int>(), *ms2ptr = ms2.ptr<int>();
|
|
|
|
|
|
|
|
CV_Assert( count >= modelPoints && count == count2 );
|
|
|
|
CV_Assert( (esz1 % sizeof(int)) == 0 && (esz2 % sizeof(int)) == 0 );
|
|
|
|
esz1 /= sizeof(int);
|
|
|
|
esz2 /= sizeof(int);
|
|
|
|
|
|
|
|
for(; iters < maxAttempts; iters++)
|
|
|
|
{
|
|
|
|
for( i = 0; i < modelPoints && iters < maxAttempts; )
|
|
|
|
{
|
|
|
|
int idx_i = 0;
|
|
|
|
for(;;)
|
|
|
|
{
|
|
|
|
idx_i = idx[i] = rng.uniform(0, count);
|
|
|
|
for( j = 0; j < i; j++ )
|
|
|
|
if( idx_i == idx[j] )
|
|
|
|
break;
|
|
|
|
if( j == i )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
for( k = 0; k < esz1; k++ )
|
|
|
|
ms1ptr[i*esz1 + k] = m1ptr[idx_i*esz1 + k];
|
|
|
|
for( k = 0; k < esz2; k++ )
|
|
|
|
ms2ptr[i*esz2 + k] = m2ptr[idx_i*esz2 + k];
|
|
|
|
if( checkPartialSubsets && !cb->checkSubset( ms1, ms2, i+1 ))
|
|
|
|
{
|
|
|
|
// we may have selected some bad points;
|
|
|
|
// so, let's remove some of them randomly
|
|
|
|
i = rng.uniform(0, i+1);
|
|
|
|
iters++;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
if( !checkPartialSubsets && i == modelPoints && !cb->checkSubset(ms1, ms2, i))
|
|
|
|
continue;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return i == modelPoints && iters < maxAttempts;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool run(InputArray _m1, InputArray _m2, OutputArray _model, OutputArray _mask) const
|
|
|
|
{
|
|
|
|
bool result = false;
|
|
|
|
Mat m1 = _m1.getMat(), m2 = _m2.getMat();
|
|
|
|
Mat err, mask, model, bestModel, ms1, ms2;
|
|
|
|
|
|
|
|
int iter, niters = MAX(maxIters, 1);
|
|
|
|
int d1 = m1.channels() > 1 ? m1.channels() : m1.cols;
|
|
|
|
int d2 = m2.channels() > 1 ? m2.channels() : m2.cols;
|
|
|
|
int count = m1.checkVector(d1), count2 = m2.checkVector(d2), maxGoodCount = 0;
|
|
|
|
|
|
|
|
RNG rng((uint64)-1);
|
|
|
|
|
|
|
|
CV_Assert( cb );
|
|
|
|
CV_Assert( confidence > 0 && confidence < 1 );
|
|
|
|
|
|
|
|
CV_Assert( count >= 0 && count2 == count );
|
|
|
|
if( count < modelPoints )
|
|
|
|
return false;
|
|
|
|
|
|
|
|
Mat bestMask0, bestMask;
|
|
|
|
|
|
|
|
if( _mask.needed() )
|
|
|
|
{
|
|
|
|
_mask.create(count, 1, CV_8U, -1, true);
|
|
|
|
bestMask0 = bestMask = _mask.getMat();
|
|
|
|
CV_Assert( (bestMask.cols == 1 || bestMask.rows == 1) && (int)bestMask.total() == count );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
bestMask.create(count, 1, CV_8U);
|
|
|
|
bestMask0 = bestMask;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( count == modelPoints )
|
|
|
|
{
|
|
|
|
if( cb->runKernel(m1, m2, bestModel) <= 0 )
|
|
|
|
return false;
|
|
|
|
bestModel.copyTo(_model);
|
|
|
|
bestMask.setTo(Scalar::all(1));
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
for( iter = 0; iter < niters; iter++ )
|
|
|
|
{
|
|
|
|
int i, nmodels;
|
|
|
|
if( count > modelPoints )
|
|
|
|
{
|
|
|
|
bool found = getSubset( m1, m2, ms1, ms2, rng, 10000 );
|
|
|
|
if( !found )
|
|
|
|
{
|
|
|
|
if( iter == 0 )
|
|
|
|
return false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
nmodels = cb->runKernel( ms1, ms2, model );
|
|
|
|
if( nmodels <= 0 )
|
|
|
|
continue;
|
|
|
|
CV_Assert( model.rows % nmodels == 0 );
|
|
|
|
Size modelSize(model.cols, model.rows/nmodels);
|
|
|
|
|
|
|
|
for( i = 0; i < nmodels; i++ )
|
|
|
|
{
|
|
|
|
Mat model_i = model.rowRange( i*modelSize.height, (i+1)*modelSize.height );
|
|
|
|
int goodCount = findInliers( m1, m2, model_i, err, mask, threshold );
|
|
|
|
|
|
|
|
if( goodCount > MAX(maxGoodCount, modelPoints-1) )
|
|
|
|
{
|
|
|
|
std::swap(mask, bestMask);
|
|
|
|
model_i.copyTo(bestModel);
|
|
|
|
maxGoodCount = goodCount;
|
|
|
|
niters = RANSACUpdateNumIters( confidence, (double)(count - goodCount)/count, modelPoints, niters );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( maxGoodCount > 0 )
|
|
|
|
{
|
|
|
|
if( bestMask.data != bestMask0.data )
|
|
|
|
{
|
|
|
|
if( bestMask.size() == bestMask0.size() )
|
|
|
|
bestMask.copyTo(bestMask0);
|
|
|
|
else
|
|
|
|
transpose(bestMask, bestMask0);
|
|
|
|
}
|
|
|
|
bestModel.copyTo(_model);
|
|
|
|
result = true;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
_model.release();
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
void setCallback(const Ptr<PointSetRegistrator::Callback>& _cb) { cb = _cb; }
|
|
|
|
|
|
|
|
Ptr<PointSetRegistrator::Callback> cb;
|
|
|
|
int modelPoints;
|
|
|
|
bool checkPartialSubsets;
|
|
|
|
double threshold;
|
|
|
|
double confidence;
|
|
|
|
int maxIters;
|
|
|
|
};
|
|
|
|
|
|
|
|
class LMeDSPointSetRegistrator : public RANSACPointSetRegistrator
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
LMeDSPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb=Ptr<PointSetRegistrator::Callback>(),
|
|
|
|
int _modelPoints=0, double _confidence=0.99, int _maxIters=1000)
|
|
|
|
: RANSACPointSetRegistrator(_cb, _modelPoints, 0, _confidence, _maxIters) {}
|
|
|
|
|
|
|
|
bool run(InputArray _m1, InputArray _m2, OutputArray _model, OutputArray _mask) const
|
|
|
|
{
|
|
|
|
const double outlierRatio = 0.45;
|
|
|
|
bool result = false;
|
|
|
|
Mat m1 = _m1.getMat(), m2 = _m2.getMat();
|
|
|
|
Mat ms1, ms2, err, errf, model, bestModel, mask, mask0;
|
|
|
|
|
|
|
|
int d1 = m1.channels() > 1 ? m1.channels() : m1.cols;
|
|
|
|
int d2 = m2.channels() > 1 ? m2.channels() : m2.cols;
|
|
|
|
int count = m1.checkVector(d1), count2 = m2.checkVector(d2);
|
|
|
|
double minMedian = DBL_MAX;
|
|
|
|
|
|
|
|
RNG rng((uint64)-1);
|
|
|
|
|
|
|
|
CV_Assert( cb );
|
|
|
|
CV_Assert( confidence > 0 && confidence < 1 );
|
|
|
|
|
|
|
|
CV_Assert( count >= 0 && count2 == count );
|
|
|
|
if( count < modelPoints )
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if( _mask.needed() )
|
|
|
|
{
|
|
|
|
_mask.create(count, 1, CV_8U, -1, true);
|
|
|
|
mask0 = mask = _mask.getMat();
|
|
|
|
CV_Assert( (mask.cols == 1 || mask.rows == 1) && (int)mask.total() == count );
|
|
|
|
}
|
|
|
|
|
|
|
|
if( count == modelPoints )
|
|
|
|
{
|
|
|
|
if( cb->runKernel(m1, m2, bestModel) <= 0 )
|
|
|
|
return false;
|
|
|
|
bestModel.copyTo(_model);
|
|
|
|
mask.setTo(Scalar::all(1));
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
int iter, niters = RANSACUpdateNumIters(confidence, outlierRatio, modelPoints, maxIters);
|
|
|
|
niters = MAX(niters, 3);
|
|
|
|
|
|
|
|
for( iter = 0; iter < niters; iter++ )
|
|
|
|
{
|
|
|
|
int i, nmodels;
|
|
|
|
if( count > modelPoints )
|
|
|
|
{
|
|
|
|
bool found = getSubset( m1, m2, ms1, ms2, rng );
|
|
|
|
if( !found )
|
|
|
|
{
|
|
|
|
if( iter == 0 )
|
|
|
|
return false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
nmodels = cb->runKernel( ms1, ms2, model );
|
|
|
|
if( nmodels <= 0 )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
CV_Assert( model.rows % nmodels == 0 );
|
|
|
|
Size modelSize(model.cols, model.rows/nmodels);
|
|
|
|
|
|
|
|
for( i = 0; i < nmodels; i++ )
|
|
|
|
{
|
|
|
|
Mat model_i = model.rowRange( i*modelSize.height, (i+1)*modelSize.height );
|
|
|
|
cb->computeError( m1, m2, model_i, err );
|
|
|
|
if( err.depth() != CV_32F )
|
|
|
|
err.convertTo(errf, CV_32F);
|
|
|
|
else
|
|
|
|
errf = err;
|
|
|
|
CV_Assert( errf.isContinuous() && errf.type() == CV_32F && (int)errf.total() == count );
|
|
|
|
std::sort(errf.ptr<int>(), errf.ptr<int>() + count);
|
|
|
|
|
|
|
|
double median = count % 2 != 0 ?
|
|
|
|
errf.at<float>(count/2) : (errf.at<float>(count/2-1) + errf.at<float>(count/2))*0.5;
|
|
|
|
|
|
|
|
if( median < minMedian )
|
|
|
|
{
|
|
|
|
minMedian = median;
|
|
|
|
model_i.copyTo(bestModel);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( minMedian < DBL_MAX )
|
|
|
|
{
|
|
|
|
double sigma = 2.5*1.4826*(1 + 5./(count - modelPoints))*std::sqrt(minMedian);
|
|
|
|
sigma = MAX( sigma, 0.001 );
|
|
|
|
|
|
|
|
count = findInliers( m1, m2, bestModel, err, mask, sigma );
|
|
|
|
if( _mask.needed() && mask0.data != mask.data )
|
|
|
|
{
|
|
|
|
if( mask0.size() == mask.size() )
|
|
|
|
mask.copyTo(mask0);
|
|
|
|
else
|
|
|
|
transpose(mask, mask0);
|
|
|
|
}
|
|
|
|
bestModel.copyTo(_model);
|
|
|
|
result = count >= modelPoints;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
_model.release();
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
Ptr<PointSetRegistrator> createRANSACPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb,
|
|
|
|
int _modelPoints, double _threshold,
|
|
|
|
double _confidence, int _maxIters)
|
|
|
|
{
|
|
|
|
return Ptr<PointSetRegistrator>(
|
|
|
|
new RANSACPointSetRegistrator(_cb, _modelPoints, _threshold, _confidence, _maxIters));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Ptr<PointSetRegistrator> createLMeDSPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb,
|
|
|
|
int _modelPoints, double _confidence, int _maxIters)
|
|
|
|
{
|
|
|
|
return Ptr<PointSetRegistrator>(
|
|
|
|
new LMeDSPointSetRegistrator(_cb, _modelPoints, _confidence, _maxIters));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class Affine3DEstimatorCallback : public PointSetRegistrator::Callback
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
int runKernel( InputArray _m1, InputArray _m2, OutputArray _model ) const
|
|
|
|
{
|
|
|
|
Mat m1 = _m1.getMat(), m2 = _m2.getMat();
|
|
|
|
const Point3f* from = m1.ptr<Point3f>();
|
|
|
|
const Point3f* to = m2.ptr<Point3f>();
|
|
|
|
|
|
|
|
const int N = 12;
|
|
|
|
double buf[N*N + N + N];
|
|
|
|
Mat A(N, N, CV_64F, &buf[0]);
|
|
|
|
Mat B(N, 1, CV_64F, &buf[0] + N*N);
|
|
|
|
Mat X(N, 1, CV_64F, &buf[0] + N*N + N);
|
|
|
|
double* Adata = A.ptr<double>();
|
|
|
|
double* Bdata = B.ptr<double>();
|
|
|
|
A = Scalar::all(0);
|
|
|
|
|
|
|
|
for( int i = 0; i < (N/3); i++ )
|
|
|
|
{
|
|
|
|
Bdata[i*3] = to[i].x;
|
|
|
|
Bdata[i*3+1] = to[i].y;
|
|
|
|
Bdata[i*3+2] = to[i].z;
|
|
|
|
|
|
|
|
double *aptr = Adata + i*3*N;
|
|
|
|
for(int k = 0; k < 3; ++k)
|
|
|
|
{
|
|
|
|
aptr[0] = from[i].x;
|
|
|
|
aptr[1] = from[i].y;
|
|
|
|
aptr[2] = from[i].z;
|
|
|
|
aptr[3] = 1.0;
|
|
|
|
aptr += 16;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
solve(A, B, X, DECOMP_SVD);
|
|
|
|
X.reshape(1, 3).copyTo(_model);
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void computeError( InputArray _m1, InputArray _m2, InputArray _model, OutputArray _err ) const
|
|
|
|
{
|
|
|
|
Mat m1 = _m1.getMat(), m2 = _m2.getMat(), model = _model.getMat();
|
|
|
|
const Point3f* from = m1.ptr<Point3f>();
|
|
|
|
const Point3f* to = m2.ptr<Point3f>();
|
|
|
|
const double* F = model.ptr<double>();
|
|
|
|
|
|
|
|
int count = m1.checkVector(3);
|
|
|
|
CV_Assert( count > 0 );
|
|
|
|
|
|
|
|
_err.create(count, 1, CV_32F);
|
|
|
|
Mat err = _err.getMat();
|
|
|
|
float* errptr = err.ptr<float>();
|
|
|
|
|
|
|
|
for(int i = 0; i < count; i++ )
|
|
|
|
{
|
|
|
|
const Point3f& f = from[i];
|
|
|
|
const Point3f& t = to[i];
|
|
|
|
|
|
|
|
double a = F[0]*f.x + F[1]*f.y + F[ 2]*f.z + F[ 3] - t.x;
|
|
|
|
double b = F[4]*f.x + F[5]*f.y + F[ 6]*f.z + F[ 7] - t.y;
|
|
|
|
double c = F[8]*f.x + F[9]*f.y + F[10]*f.z + F[11] - t.z;
|
|
|
|
|
|
|
|
errptr[i] = (float)(a*a + b*b + c*c);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool checkSubset( InputArray _ms1, InputArray _ms2, int count ) const
|
|
|
|
{
|
|
|
|
const float threshold = 0.996f;
|
|
|
|
Mat ms1 = _ms1.getMat(), ms2 = _ms2.getMat();
|
|
|
|
|
|
|
|
for( int inp = 1; inp <= 2; inp++ )
|
|
|
|
{
|
|
|
|
int j, k, i = count - 1;
|
|
|
|
const Mat* msi = inp == 1 ? &ms1 : &ms2;
|
|
|
|
const Point3f* ptr = msi->ptr<Point3f>();
|
|
|
|
|
|
|
|
CV_Assert( count <= msi->rows );
|
|
|
|
|
|
|
|
// check that the i-th selected point does not belong
|
|
|
|
// to a line connecting some previously selected points
|
|
|
|
for(j = 0; j < i; ++j)
|
|
|
|
{
|
|
|
|
Point3f d1 = ptr[j] - ptr[i];
|
|
|
|
float n1 = d1.x*d1.x + d1.y*d1.y;
|
|
|
|
|
|
|
|
for(k = 0; k < j; ++k)
|
|
|
|
{
|
|
|
|
Point3f d2 = ptr[k] - ptr[i];
|
|
|
|
float denom = (d2.x*d2.x + d2.y*d2.y)*n1;
|
|
|
|
float num = d1.x*d2.x + d1.y*d2.y;
|
|
|
|
|
|
|
|
if( num*num > threshold*threshold*denom )
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
int cv::estimateAffine3D(InputArray _from, InputArray _to,
|
|
|
|
OutputArray _out, OutputArray _inliers,
|
|
|
|
double param1, double param2)
|
|
|
|
{
|
|
|
|
CV_INSTRUMENT_REGION()
|
|
|
|
|
|
|
|
Mat from = _from.getMat(), to = _to.getMat();
|
|
|
|
int count = from.checkVector(3);
|
|
|
|
|
|
|
|
CV_Assert( count >= 0 && to.checkVector(3) == count );
|
|
|
|
|
|
|
|
Mat dFrom, dTo;
|
|
|
|
from.convertTo(dFrom, CV_32F);
|
|
|
|
to.convertTo(dTo, CV_32F);
|
|
|
|
dFrom = dFrom.reshape(3, count);
|
|
|
|
dTo = dTo.reshape(3, count);
|
|
|
|
|
|
|
|
const double epsilon = DBL_EPSILON;
|
|
|
|
param1 = param1 <= 0 ? 3 : param1;
|
|
|
|
param2 = (param2 < epsilon) ? 0.99 : (param2 > 1 - epsilon) ? 0.99 : param2;
|
|
|
|
|
|
|
|
return createRANSACPointSetRegistrator(makePtr<Affine3DEstimatorCallback>(), 4, param1, param2)->run(dFrom, dTo, _out, _inliers);
|
|
|
|
}
|