mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
761 lines
28 KiB
761 lines
28 KiB
13 years ago
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// @Authors
|
||
|
// Peng Xiao, pengxiao@multicorewareinc.com
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other oclMaterials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors as is and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
#include <iomanip>
|
||
|
#include "precomp.hpp"
|
||
|
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace cv::ocl;
|
||
|
using namespace std;
|
||
|
|
||
|
#if !defined (HAVE_OPENCL)
|
||
|
|
||
|
cv::ocl::SURF_OCL::SURF_OCL() { throw_nogpu(); }
|
||
|
cv::ocl::SURF_OCL::SURF_OCL(double, int, int, bool, float, bool) { throw_nogpu(); }
|
||
|
int cv::ocl::SURF_OCL::descriptorSize() const { throw_nogpu(); return 0;}
|
||
|
void cv::ocl::SURF_OCL::uploadKeypoints(const vector<KeyPoint>&, oclMat&) { throw_nogpu(); }
|
||
|
void cv::ocl::SURF_OCL::downloadKeypoints(const oclMat&, vector<KeyPoint>&) { throw_nogpu(); }
|
||
|
void cv::ocl::SURF_OCL::downloadDescriptors(const oclMat&, vector<float>&) { throw_nogpu(); }
|
||
|
void cv::ocl::SURF_OCL::operator()(const oclMat&, const oclMat&, oclMat&) { throw_nogpu(); }
|
||
|
void cv::ocl::SURF_OCL::operator()(const oclMat&, const oclMat&, oclMat&, oclMat&, bool) { throw_nogpu(); }
|
||
|
void cv::ocl::SURF_OCL::operator()(const oclMat&, const oclMat&, vector<KeyPoint>&) { throw_nogpu(); }
|
||
|
void cv::ocl::SURF_OCL::operator()(const oclMat&, const oclMat&, vector<KeyPoint>&, oclMat&, bool) { throw_nogpu(); }
|
||
|
void cv::ocl::SURF_OCL::operator()(const oclMat&, const oclMat&, vector<KeyPoint>&, vector<float>&, bool) { throw_nogpu(); }
|
||
|
void cv::ocl::SURF_OCL::releaseMemory() { throw_nogpu(); }
|
||
|
|
||
|
#else /* !defined (HAVE_OPENCL) */
|
||
|
namespace cv { namespace ocl
|
||
|
{
|
||
|
///////////////////////////OpenCL kernel strings///////////////////////////
|
||
|
extern const char * nonfree_surf;
|
||
|
}}
|
||
|
|
||
|
namespace
|
||
|
{
|
||
|
static inline int divUp(int total, int grain)
|
||
|
{
|
||
|
return (total + grain - 1) / grain;
|
||
|
}
|
||
|
static inline int calcSize(int octave, int layer)
|
||
|
{
|
||
|
/* Wavelet size at first layer of first octave. */
|
||
|
const int HAAR_SIZE0 = 9;
|
||
|
|
||
|
/* Wavelet size increment between layers. This should be an even number,
|
||
|
such that the wavelet sizes in an octave are either all even or all odd.
|
||
|
This ensures that when looking for the neighbours of a sample, the layers
|
||
|
|
||
|
above and below are aligned correctly. */
|
||
|
const int HAAR_SIZE_INC = 6;
|
||
|
|
||
|
return (HAAR_SIZE0 + HAAR_SIZE_INC * layer) << octave;
|
||
|
}
|
||
|
|
||
|
class SURF_OCL_Invoker
|
||
|
{
|
||
|
public:
|
||
|
// facilities
|
||
|
void bindImgTex(const oclMat& img);
|
||
|
void bindSumTex(const oclMat& sum);
|
||
|
void bindMaskSumTex(const oclMat& maskSum);
|
||
|
|
||
|
//void loadGlobalConstants(int maxCandidates, int maxFeatures, int img_rows, int img_cols, int nOctaveLayers, float hessianThreshold);
|
||
|
//void loadOctaveConstants(int octave, int layer_rows, int layer_cols);
|
||
|
|
||
|
// kernel callers declearations
|
||
|
void icvCalcLayerDetAndTrace_gpu(oclMat& det, oclMat& trace, int octave, int nOctaveLayers, int layer_rows);
|
||
|
|
||
|
void icvFindMaximaInLayer_gpu(const oclMat& det, const oclMat& trace, oclMat& maxPosBuffer, oclMat& maxCounter, int counterOffset,
|
||
|
int octave, bool use_mask, int nLayers, int layer_rows, int layer_cols);
|
||
|
|
||
|
void icvInterpolateKeypoint_gpu(const oclMat& det, const oclMat& maxPosBuffer, unsigned int maxCounter,
|
||
|
oclMat& keypoints, oclMat& counters, int octave, int layer_rows, int maxFeatures);
|
||
|
|
||
|
void icvCalcOrientation_gpu(const oclMat& keypoints, int nFeatures);
|
||
|
|
||
|
void compute_descriptors_gpu(const oclMat& descriptors, const oclMat& keypoints, int nFeatures);
|
||
|
// end of kernel callers declearations
|
||
|
|
||
|
|
||
|
SURF_OCL_Invoker(SURF_OCL& surf, const oclMat& img, const oclMat& mask) :
|
||
|
surf_(surf),
|
||
|
img_cols(img.cols), img_rows(img.rows),
|
||
|
use_mask(!mask.empty())
|
||
|
{
|
||
|
CV_Assert(!img.empty() && img.type() == CV_8UC1);
|
||
|
CV_Assert(mask.empty() || (mask.size() == img.size() && mask.type() == CV_8UC1));
|
||
|
CV_Assert(surf_.nOctaves > 0 && surf_.nOctaveLayers > 0);
|
||
|
|
||
|
const int min_size = calcSize(surf_.nOctaves - 1, 0);
|
||
|
CV_Assert(img_rows - min_size >= 0);
|
||
|
CV_Assert(img_cols - min_size >= 0);
|
||
|
|
||
|
const int layer_rows = img_rows >> (surf_.nOctaves - 1);
|
||
|
const int layer_cols = img_cols >> (surf_.nOctaves - 1);
|
||
|
const int min_margin = ((calcSize((surf_.nOctaves - 1), 2) >> 1) >> (surf_.nOctaves - 1)) + 1;
|
||
|
CV_Assert(layer_rows - 2 * min_margin > 0);
|
||
|
CV_Assert(layer_cols - 2 * min_margin > 0);
|
||
|
|
||
|
maxFeatures = std::min(static_cast<int>(img.size().area() * surf.keypointsRatio), 65535);
|
||
|
maxCandidates = std::min(static_cast<int>(1.5 * maxFeatures), 65535);
|
||
|
|
||
|
CV_Assert(maxFeatures > 0);
|
||
|
|
||
|
counters.create(1, surf_.nOctaves + 1, CV_32SC1);
|
||
|
counters.setTo(Scalar::all(0));
|
||
|
|
||
|
//loadGlobalConstants(maxCandidates, maxFeatures, img_rows, img_cols, surf_.nOctaveLayers, static_cast<float>(surf_.hessianThreshold));
|
||
|
|
||
|
bindImgTex(img);
|
||
|
oclMat integral_sqsum;
|
||
|
integral(img, surf_.sum, integral_sqsum); // the two argumented integral version is incorrect
|
||
|
|
||
|
bindSumTex(surf_.sum);
|
||
|
maskSumTex = 0;
|
||
|
|
||
|
if (use_mask)
|
||
|
{
|
||
|
throw std::exception();
|
||
|
//!FIXME
|
||
|
// temp fix for missing min overload
|
||
|
oclMat temp(mask.size(), mask.type());
|
||
|
temp.setTo(Scalar::all(1.0));
|
||
|
//cv::ocl::min(mask, temp, surf_.mask1); ///////// disable this
|
||
|
integral(surf_.mask1, surf_.maskSum);
|
||
|
bindMaskSumTex(surf_.maskSum);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void detectKeypoints(oclMat& keypoints)
|
||
|
{
|
||
|
// create image pyramid buffers
|
||
|
// different layers have same sized buffers, but they are sampled from gaussin kernel.
|
||
|
surf_.det.create(img_rows * (surf_.nOctaveLayers + 2), img_cols, CV_32FC1);
|
||
|
surf_.trace.create(img_rows * (surf_.nOctaveLayers + 2), img_cols, CV_32FC1);
|
||
|
|
||
|
surf_.maxPosBuffer.create(1, maxCandidates, CV_32SC4);
|
||
|
keypoints.create(SURF_OCL::ROWS_COUNT, maxFeatures, CV_32FC1);
|
||
|
keypoints.setTo(Scalar::all(0));
|
||
|
|
||
|
for (int octave = 0; octave < surf_.nOctaves; ++octave)
|
||
|
{
|
||
|
const int layer_rows = img_rows >> octave;
|
||
|
const int layer_cols = img_cols >> octave;
|
||
|
|
||
|
//loadOctaveConstants(octave, layer_rows, layer_cols);
|
||
|
|
||
|
icvCalcLayerDetAndTrace_gpu(surf_.det, surf_.trace, octave, surf_.nOctaveLayers, layer_rows);
|
||
|
|
||
|
icvFindMaximaInLayer_gpu(surf_.det, surf_.trace, surf_.maxPosBuffer, counters, 1 + octave,
|
||
|
octave, use_mask, surf_.nOctaveLayers, layer_rows, layer_cols);
|
||
|
|
||
|
unsigned int maxCounter = Mat(counters).at<unsigned int>(1 + octave);
|
||
|
maxCounter = std::min(maxCounter, static_cast<unsigned int>(maxCandidates));
|
||
|
|
||
|
if (maxCounter > 0)
|
||
|
{
|
||
|
icvInterpolateKeypoint_gpu(surf_.det, surf_.maxPosBuffer, maxCounter,
|
||
|
keypoints, counters, octave, layer_rows, maxFeatures);
|
||
|
}
|
||
|
}
|
||
|
unsigned int featureCounter = Mat(counters).at<unsigned int>(0);
|
||
|
featureCounter = std::min(featureCounter, static_cast<unsigned int>(maxFeatures));
|
||
|
|
||
|
keypoints.cols = featureCounter;
|
||
|
|
||
|
if (surf_.upright)
|
||
|
keypoints.row(SURF_OCL::ANGLE_ROW).setTo(Scalar::all(90.0));
|
||
|
else
|
||
|
findOrientation(keypoints);
|
||
|
}
|
||
|
|
||
|
void findOrientation(oclMat& keypoints)
|
||
|
{
|
||
|
const int nFeatures = keypoints.cols;
|
||
|
if (nFeatures > 0)
|
||
|
{
|
||
|
icvCalcOrientation_gpu(keypoints, nFeatures);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void computeDescriptors(const oclMat& keypoints, oclMat& descriptors, int descriptorSize)
|
||
|
{
|
||
|
const int nFeatures = keypoints.cols;
|
||
|
if (nFeatures > 0)
|
||
|
{
|
||
|
descriptors.create(nFeatures, descriptorSize, CV_32F);
|
||
|
compute_descriptors_gpu(descriptors, keypoints, nFeatures);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
~SURF_OCL_Invoker()
|
||
|
{
|
||
|
if(imgTex)
|
||
|
openCLFree(imgTex);
|
||
|
if(sumTex)
|
||
|
openCLFree(sumTex);
|
||
|
if(maskSumTex)
|
||
|
openCLFree(maskSumTex);
|
||
|
additioalParamBuffer.release();
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
SURF_OCL& surf_;
|
||
|
|
||
|
int img_cols, img_rows;
|
||
|
|
||
|
bool use_mask;
|
||
|
|
||
|
int maxCandidates;
|
||
|
int maxFeatures;
|
||
|
|
||
|
oclMat counters;
|
||
|
|
||
|
// texture buffers
|
||
|
cl_mem imgTex;
|
||
|
cl_mem sumTex;
|
||
|
cl_mem maskSumTex;
|
||
|
|
||
|
oclMat additioalParamBuffer;
|
||
|
};
|
||
|
}
|
||
|
|
||
|
cv::ocl::SURF_OCL::SURF_OCL()
|
||
|
{
|
||
|
hessianThreshold = 100.0f;
|
||
|
extended = true;
|
||
|
nOctaves = 4;
|
||
|
nOctaveLayers = 2;
|
||
|
keypointsRatio = 0.01f;
|
||
|
upright = false;
|
||
|
}
|
||
|
|
||
|
cv::ocl::SURF_OCL::SURF_OCL(double _threshold, int _nOctaves, int _nOctaveLayers, bool _extended, float _keypointsRatio, bool _upright)
|
||
|
{
|
||
|
hessianThreshold = _threshold;
|
||
|
extended = _extended;
|
||
|
nOctaves = _nOctaves;
|
||
|
nOctaveLayers = _nOctaveLayers;
|
||
|
keypointsRatio = _keypointsRatio;
|
||
|
upright = _upright;
|
||
|
}
|
||
|
|
||
|
int cv::ocl::SURF_OCL::descriptorSize() const
|
||
|
{
|
||
|
return extended ? 128 : 64;
|
||
|
}
|
||
|
|
||
|
void cv::ocl::SURF_OCL::uploadKeypoints(const vector<KeyPoint>& keypoints, oclMat& keypointsGPU)
|
||
|
{
|
||
|
if (keypoints.empty())
|
||
|
keypointsGPU.release();
|
||
|
else
|
||
|
{
|
||
|
Mat keypointsCPU(SURF_OCL::ROWS_COUNT, static_cast<int>(keypoints.size()), CV_32FC1);
|
||
|
|
||
|
float* kp_x = keypointsCPU.ptr<float>(SURF_OCL::X_ROW);
|
||
|
float* kp_y = keypointsCPU.ptr<float>(SURF_OCL::Y_ROW);
|
||
|
int* kp_laplacian = keypointsCPU.ptr<int>(SURF_OCL::LAPLACIAN_ROW);
|
||
|
int* kp_octave = keypointsCPU.ptr<int>(SURF_OCL::OCTAVE_ROW);
|
||
|
float* kp_size = keypointsCPU.ptr<float>(SURF_OCL::SIZE_ROW);
|
||
|
float* kp_dir = keypointsCPU.ptr<float>(SURF_OCL::ANGLE_ROW);
|
||
|
float* kp_hessian = keypointsCPU.ptr<float>(SURF_OCL::HESSIAN_ROW);
|
||
|
|
||
|
for (size_t i = 0, size = keypoints.size(); i < size; ++i)
|
||
|
{
|
||
|
const KeyPoint& kp = keypoints[i];
|
||
|
kp_x[i] = kp.pt.x;
|
||
|
kp_y[i] = kp.pt.y;
|
||
|
kp_octave[i] = kp.octave;
|
||
|
kp_size[i] = kp.size;
|
||
|
kp_dir[i] = kp.angle;
|
||
|
kp_hessian[i] = kp.response;
|
||
|
kp_laplacian[i] = 1;
|
||
|
}
|
||
|
|
||
|
keypointsGPU.upload(keypointsCPU);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void cv::ocl::SURF_OCL::downloadKeypoints(const oclMat& keypointsGPU, vector<KeyPoint>& keypoints)
|
||
|
{
|
||
|
const int nFeatures = keypointsGPU.cols;
|
||
|
|
||
|
if (nFeatures == 0)
|
||
|
keypoints.clear();
|
||
|
else
|
||
|
{
|
||
|
CV_Assert(keypointsGPU.type() == CV_32FC1 && keypointsGPU.rows == ROWS_COUNT);
|
||
|
|
||
|
Mat keypointsCPU(keypointsGPU);
|
||
|
|
||
|
keypoints.resize(nFeatures);
|
||
|
|
||
|
float* kp_x = keypointsCPU.ptr<float>(SURF_OCL::X_ROW);
|
||
|
float* kp_y = keypointsCPU.ptr<float>(SURF_OCL::Y_ROW);
|
||
|
int* kp_laplacian = keypointsCPU.ptr<int>(SURF_OCL::LAPLACIAN_ROW);
|
||
|
int* kp_octave = keypointsCPU.ptr<int>(SURF_OCL::OCTAVE_ROW);
|
||
|
float* kp_size = keypointsCPU.ptr<float>(SURF_OCL::SIZE_ROW);
|
||
|
float* kp_dir = keypointsCPU.ptr<float>(SURF_OCL::ANGLE_ROW);
|
||
|
float* kp_hessian = keypointsCPU.ptr<float>(SURF_OCL::HESSIAN_ROW);
|
||
|
|
||
|
for (int i = 0; i < nFeatures; ++i)
|
||
|
{
|
||
|
KeyPoint& kp = keypoints[i];
|
||
|
kp.pt.x = kp_x[i];
|
||
|
kp.pt.y = kp_y[i];
|
||
|
kp.class_id = kp_laplacian[i];
|
||
|
kp.octave = kp_octave[i];
|
||
|
kp.size = kp_size[i];
|
||
|
kp.angle = kp_dir[i];
|
||
|
kp.response = kp_hessian[i];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void cv::ocl::SURF_OCL::downloadDescriptors(const oclMat& descriptorsGPU, vector<float>& descriptors)
|
||
|
{
|
||
|
if (descriptorsGPU.empty())
|
||
|
descriptors.clear();
|
||
|
else
|
||
|
{
|
||
|
CV_Assert(descriptorsGPU.type() == CV_32F);
|
||
|
|
||
|
descriptors.resize(descriptorsGPU.rows * descriptorsGPU.cols);
|
||
|
Mat descriptorsCPU(descriptorsGPU.size(), CV_32F, &descriptors[0]);
|
||
|
descriptorsGPU.download(descriptorsCPU);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void cv::ocl::SURF_OCL::operator()(const oclMat& img, const oclMat& mask, oclMat& keypoints)
|
||
|
{
|
||
|
if (!img.empty())
|
||
|
{
|
||
|
SURF_OCL_Invoker surf(*this, img, mask);
|
||
|
|
||
|
surf.detectKeypoints(keypoints);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void cv::ocl::SURF_OCL::operator()(const oclMat& img, const oclMat& mask, oclMat& keypoints, oclMat& descriptors,
|
||
|
bool useProvidedKeypoints)
|
||
|
{
|
||
|
if (!img.empty())
|
||
|
{
|
||
|
SURF_OCL_Invoker surf(*this, img, mask);
|
||
|
|
||
|
if (!useProvidedKeypoints)
|
||
|
surf.detectKeypoints(keypoints);
|
||
|
else if (!upright)
|
||
|
{
|
||
|
surf.findOrientation(keypoints);
|
||
|
}
|
||
|
|
||
|
surf.computeDescriptors(keypoints, descriptors, descriptorSize());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void cv::ocl::SURF_OCL::operator()(const oclMat& img, const oclMat& mask, vector<KeyPoint>& keypoints)
|
||
|
{
|
||
|
oclMat keypointsGPU;
|
||
|
|
||
|
(*this)(img, mask, keypointsGPU);
|
||
|
|
||
|
downloadKeypoints(keypointsGPU, keypoints);
|
||
|
}
|
||
|
|
||
|
void cv::ocl::SURF_OCL::operator()(const oclMat& img, const oclMat& mask, vector<KeyPoint>& keypoints,
|
||
|
oclMat& descriptors, bool useProvidedKeypoints)
|
||
|
{
|
||
|
oclMat keypointsGPU;
|
||
|
|
||
|
if (useProvidedKeypoints)
|
||
|
uploadKeypoints(keypoints, keypointsGPU);
|
||
|
|
||
|
(*this)(img, mask, keypointsGPU, descriptors, useProvidedKeypoints);
|
||
|
|
||
|
downloadKeypoints(keypointsGPU, keypoints);
|
||
|
}
|
||
|
|
||
|
void cv::ocl::SURF_OCL::operator()(const oclMat& img, const oclMat& mask, vector<KeyPoint>& keypoints,
|
||
|
vector<float>& descriptors, bool useProvidedKeypoints)
|
||
|
{
|
||
|
oclMat descriptorsGPU;
|
||
|
|
||
|
(*this)(img, mask, keypoints, descriptorsGPU, useProvidedKeypoints);
|
||
|
|
||
|
downloadDescriptors(descriptorsGPU, descriptors);
|
||
|
}
|
||
|
|
||
|
void cv::ocl::SURF_OCL::releaseMemory()
|
||
|
{
|
||
|
sum.release();
|
||
|
mask1.release();
|
||
|
maskSum.release();
|
||
|
intBuffer.release();
|
||
|
det.release();
|
||
|
trace.release();
|
||
|
maxPosBuffer.release();
|
||
|
}
|
||
|
|
||
|
// Facilities
|
||
|
|
||
|
//// load SURF constants into device memory
|
||
|
//void SURF_OCL_Invoker::loadGlobalConstants(int maxCandidates, int maxFeatures, int img_rows, int img_cols, int nOctaveLayers, float hessianThreshold)
|
||
|
//{
|
||
|
// Mat tmp(1, 9, CV_32FC1);
|
||
|
// float * tmp_data = tmp.ptr<float>();
|
||
|
// *tmp_data = maxCandidates;
|
||
|
// *(++tmp_data) = maxFeatures;
|
||
|
// *(++tmp_data) = img_rows;
|
||
|
// *(++tmp_data) = img_cols;
|
||
|
// *(++tmp_data) = nOctaveLayers;
|
||
|
// *(++tmp_data) = hessianThreshold;
|
||
|
// additioalParamBuffer = tmp;
|
||
|
//}
|
||
|
//void SURF_OCL_Invoker::loadOctaveConstants(int octave, int layer_rows, int layer_cols)
|
||
|
//{
|
||
|
// Mat tmp = additioalParamBuffer;
|
||
|
// float * tmp_data = tmp.ptr<float>();
|
||
|
// tmp_data += 6;
|
||
|
// *tmp_data = octave;
|
||
|
// *(++tmp_data) = layer_rows;
|
||
|
// *(++tmp_data) = layer_cols;
|
||
|
// additioalParamBuffer = tmp;
|
||
|
//}
|
||
|
|
||
|
// create and bind source buffer to image oject.
|
||
|
void SURF_OCL_Invoker::bindImgTex(const oclMat& img)
|
||
|
{
|
||
|
Mat cpu_img(img); // time consuming
|
||
|
cl_image_format format;
|
||
|
int err;
|
||
|
|
||
|
format.image_channel_data_type = CL_UNSIGNED_INT8;
|
||
|
format.image_channel_order = CL_R;
|
||
|
|
||
|
#if CL_VERSION_1_2
|
||
|
cl_image_desc desc;
|
||
|
desc.image_type = CL_MEM_OBJECT_IMAGE2D;
|
||
|
desc.image_width = cpu_img.cols;
|
||
|
desc.image_height = cpu_img.rows;
|
||
|
desc.image_depth = NULL;
|
||
|
desc.image_array_size = 1;
|
||
|
desc.image_row_pitch = cpu_img.step;
|
||
|
desc.image_slice_pitch= 0;
|
||
|
desc.buffer = NULL;
|
||
|
desc.num_mip_levels = 0;
|
||
|
desc.num_samples = 0;
|
||
|
imgTex = clCreateImage(img.clCxt->impl->clContext, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, &format, &desc, cpu_img.data, &err);
|
||
|
#else
|
||
|
imgTex = clCreateImage2D(
|
||
|
img.clCxt->impl->clContext,
|
||
|
CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
|
||
|
&format,
|
||
|
cpu_img.cols,
|
||
|
cpu_img.rows,
|
||
|
cpu_img.step,
|
||
|
cpu_img.data,
|
||
|
&err);
|
||
|
#endif
|
||
|
openCLSafeCall(err);
|
||
|
}
|
||
|
|
||
|
void SURF_OCL_Invoker::bindSumTex(const oclMat& sum)
|
||
|
{
|
||
|
Mat cpu_img(sum); // time consuming
|
||
|
cl_image_format format;
|
||
|
int err;
|
||
|
format.image_channel_data_type = CL_UNSIGNED_INT32;
|
||
|
format.image_channel_order = CL_R;
|
||
|
#if CL_VERSION_1_2
|
||
|
cl_image_desc desc;
|
||
|
desc.image_type = CL_MEM_OBJECT_IMAGE2D;
|
||
|
desc.image_width = cpu_img.cols;
|
||
|
desc.image_height = cpu_img.rows;
|
||
|
desc.image_depth = NULL;
|
||
|
desc.image_array_size = 1;
|
||
|
desc.image_row_pitch = cpu_img.step;
|
||
|
desc.image_slice_pitch= 0;
|
||
|
desc.buffer = NULL;
|
||
|
desc.num_mip_levels = 0;
|
||
|
desc.num_samples = 0;
|
||
|
sumTex = clCreateImage(sum.clCxt->impl->clContext, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, &format, &desc, cpu_img.data, &err);
|
||
|
#else
|
||
|
sumTex = clCreateImage2D(
|
||
|
sum.clCxt->impl->clContext,
|
||
|
CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
|
||
|
&format,
|
||
|
cpu_img.cols,
|
||
|
cpu_img.rows,
|
||
|
cpu_img.step,
|
||
|
cpu_img.data,
|
||
|
&err);
|
||
|
#endif
|
||
|
openCLSafeCall(err);
|
||
|
}
|
||
|
void SURF_OCL_Invoker::bindMaskSumTex(const oclMat& maskSum)
|
||
|
{
|
||
|
Mat cpu_img(maskSum); // time consuming
|
||
|
cl_image_format format;
|
||
|
int err;
|
||
|
format.image_channel_data_type = CL_UNSIGNED_INT32;
|
||
|
format.image_channel_order = CL_R;
|
||
|
#if CL_VERSION_1_2
|
||
|
cl_image_desc desc;
|
||
|
desc.image_type = CL_MEM_OBJECT_IMAGE2D;
|
||
|
desc.image_width = cpu_img.cols;
|
||
|
desc.image_height = cpu_img.rows;
|
||
|
desc.image_depth = NULL;
|
||
|
desc.image_array_size = 1;
|
||
|
desc.image_row_pitch = cpu_img.step;
|
||
|
desc.image_slice_pitch= 0;
|
||
|
desc.buffer = NULL;
|
||
|
desc.num_mip_levels = 0;
|
||
|
desc.num_samples = 0;
|
||
|
maskSumTex = clCreateImage(maskSum.clCxt->impl->clContext, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, &format, &desc, cpu_img.data, &err);
|
||
|
#else
|
||
|
maskSumTex = clCreateImage2D(
|
||
|
maskSum.clCxt->impl->clContext,
|
||
|
CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
|
||
|
&format,
|
||
|
cpu_img.cols,
|
||
|
cpu_img.rows,
|
||
|
cpu_img.step,
|
||
|
cpu_img.data,
|
||
|
&err);
|
||
|
#endif
|
||
|
openCLSafeCall(err);
|
||
|
}
|
||
|
|
||
|
////////////////////////////
|
||
|
// kernel caller definitions
|
||
|
void SURF_OCL_Invoker::icvCalcLayerDetAndTrace_gpu(oclMat& det, oclMat& trace, int octave, int nOctaveLayers, int c_layer_rows)
|
||
|
{
|
||
|
const int min_size = calcSize(octave, 0);
|
||
|
const int max_samples_i = 1 + ((img_rows - min_size) >> octave);
|
||
|
const int max_samples_j = 1 + ((img_cols - min_size) >> octave);
|
||
|
|
||
|
Context *clCxt = det.clCxt;
|
||
|
string kernelName = "icvCalcLayerDetAndTrace";
|
||
|
vector< pair<size_t, const void *> > args;
|
||
|
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&sumTex));
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&det.data));
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&trace.data));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&det.step));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&trace.step));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&img_rows));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&img_cols));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&nOctaveLayers));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&octave));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&c_layer_rows));
|
||
|
|
||
|
size_t localThreads[3] = {16, 16, 1};
|
||
|
size_t globalThreads[3] = {
|
||
|
divUp(max_samples_j, localThreads[0]) * localThreads[0],
|
||
|
divUp(max_samples_i, localThreads[1]) * localThreads[1] * (nOctaveLayers + 2),
|
||
|
1};
|
||
|
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
||
|
}
|
||
|
|
||
|
void SURF_OCL_Invoker::icvFindMaximaInLayer_gpu(const oclMat& det, const oclMat& trace, oclMat& maxPosBuffer, oclMat& maxCounter, int counterOffset,
|
||
|
int octave, bool use_mask, int nLayers, int layer_rows, int layer_cols)
|
||
|
{
|
||
|
const int min_margin = ((calcSize(octave, 2) >> 1) >> octave) + 1;
|
||
|
|
||
|
Context *clCxt = det.clCxt;
|
||
|
string kernelName = use_mask ? "icvFindMaximaInLayer_withmask" : "icvFindMaximaInLayer";
|
||
|
vector< pair<size_t, const void *> > args;
|
||
|
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&det.data));
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&trace.data));
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&maxPosBuffer.data));
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&maxCounter.data));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&counterOffset));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&det.step));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&trace.step));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&img_rows));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&img_cols));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&nLayers));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&octave));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&layer_rows));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&layer_cols));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&maxCandidates));
|
||
|
args.push_back( make_pair( sizeof(cl_float), (void *)&surf_.hessianThreshold));
|
||
|
|
||
|
if(use_mask)
|
||
|
{
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&maskSumTex));
|
||
|
}
|
||
|
|
||
|
size_t localThreads[3] = {16, 16, 1};
|
||
|
size_t globalThreads[3] = {divUp(layer_cols - 2 * min_margin, localThreads[0] - 2) * localThreads[0],
|
||
|
divUp(layer_rows - 2 * min_margin, localThreads[1] - 2) * nLayers * localThreads[1],
|
||
|
1};
|
||
|
|
||
|
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
||
|
}
|
||
|
|
||
|
void SURF_OCL_Invoker::icvInterpolateKeypoint_gpu(const oclMat& det, const oclMat& maxPosBuffer, unsigned int maxCounter,
|
||
|
oclMat& keypoints, oclMat& counters, int octave, int layer_rows, int maxFeatures)
|
||
|
{
|
||
|
Context *clCxt = det.clCxt;
|
||
|
string kernelName = "icvInterpolateKeypoint";
|
||
|
vector< pair<size_t, const void *> > args;
|
||
|
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&det.data));
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&maxPosBuffer.data));
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&keypoints.data));
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&counters.data));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&det.step));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&keypoints.step));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&img_rows));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&img_cols));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&octave));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&layer_rows));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&maxFeatures));
|
||
|
|
||
|
size_t localThreads[3] = {3, 3, 3};
|
||
|
size_t globalThreads[3] = {maxCounter * localThreads[0], 1, 1};
|
||
|
|
||
|
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
||
|
}
|
||
|
|
||
|
void SURF_OCL_Invoker::icvCalcOrientation_gpu(const oclMat& keypoints, int nFeatures)
|
||
|
{
|
||
|
Context * clCxt = counters.clCxt;
|
||
|
string kernelName = "icvCalcOrientation";
|
||
|
|
||
|
vector< pair<size_t, const void *> > args;
|
||
|
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&sumTex));
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&keypoints.data));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&keypoints.step));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&img_rows));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&img_cols));
|
||
|
|
||
|
size_t localThreads[3] = {32, 4, 1};
|
||
|
size_t globalThreads[3] = {nFeatures * localThreads[0], localThreads[1], 1};
|
||
|
|
||
|
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
||
|
}
|
||
|
|
||
|
void SURF_OCL_Invoker::compute_descriptors_gpu(const oclMat& descriptors, const oclMat& keypoints, int nFeatures)
|
||
|
{
|
||
|
// compute unnormalized descriptors, then normalize them - odd indexing since grid must be 2D
|
||
|
Context *clCxt = descriptors.clCxt;
|
||
|
string kernelName = "";
|
||
|
vector< pair<size_t, const void *> > args;
|
||
|
size_t localThreads[3] = {1, 1, 1};
|
||
|
size_t globalThreads[3] = {1, 1, 1};
|
||
|
|
||
|
if(descriptors.cols == 64)
|
||
|
{
|
||
|
kernelName = "compute_descriptors64";
|
||
|
|
||
|
localThreads[0] = 6;
|
||
|
localThreads[1] = 6;
|
||
|
|
||
|
globalThreads[0] = nFeatures * localThreads[0];
|
||
|
globalThreads[1] = 16 * localThreads[1];
|
||
|
|
||
|
args.clear();
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&imgTex));
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&descriptors.data));
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&keypoints.data));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&descriptors.step));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&keypoints.step));
|
||
|
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
||
|
|
||
|
kernelName = "normalize_descriptors64";
|
||
|
|
||
|
localThreads[0] = 64;
|
||
|
localThreads[1] = 1;
|
||
|
|
||
|
globalThreads[0] = nFeatures * localThreads[0];
|
||
|
globalThreads[1] = localThreads[1];
|
||
|
|
||
|
args.clear();
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&descriptors.data));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&descriptors.step));
|
||
|
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
kernelName = "compute_descriptors128";
|
||
|
|
||
|
localThreads[0] = 6;
|
||
|
localThreads[1] = 6;
|
||
|
|
||
|
globalThreads[0] = nFeatures * localThreads[0];
|
||
|
globalThreads[1] = 16 * localThreads[1];
|
||
|
|
||
|
args.clear();
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&imgTex));
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&descriptors.data));
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&keypoints.data));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&descriptors.step));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&keypoints.step));
|
||
|
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
||
|
|
||
|
kernelName = "normalize_descriptors128";
|
||
|
|
||
|
localThreads[0] = 128;
|
||
|
localThreads[1] = 1;
|
||
|
|
||
|
globalThreads[0] = nFeatures * localThreads[0];
|
||
|
globalThreads[1] = localThreads[1];
|
||
|
|
||
|
args.clear();
|
||
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&descriptors.data));
|
||
|
args.push_back( make_pair( sizeof(cl_int), (void *)&descriptors.step));
|
||
|
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif // /* !defined (HAVE_OPENCL) */
|
||
|
|