|
|
|
// WARNING: this sample is under construction! Use it on your own risk.
|
|
|
|
|
|
|
|
#include <opencv2/contrib/contrib.hpp>
|
|
|
|
#include <opencv2/objdetect/objdetect.hpp>
|
|
|
|
#include <opencv2/highgui/highgui.hpp>
|
|
|
|
#include <opencv2/imgproc/imgproc.hpp>
|
|
|
|
#include <opencv2/gpu/gpu.hpp>
|
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
#include <iomanip>
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::gpu;
|
|
|
|
|
|
|
|
void help()
|
|
|
|
{
|
|
|
|
cout << "Usage: ./cascadeclassifier <cascade_file> <image_or_video_or_cameraid>\n"
|
|
|
|
"Using OpenCV version " << CV_VERSION << endl << endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
void DetectAndDraw(Mat& img, CascadeClassifier_GPU& cascade);
|
|
|
|
|
|
|
|
String cascadeName = "../../data/haarcascades/haarcascade_frontalface_alt.xml";
|
|
|
|
String nestedCascadeName = "../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml";
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<class T> void convertAndReseize(const T& src, T& gray, T& resized, double scale = 2.0)
|
|
|
|
{
|
|
|
|
if (src.channels() == 3)
|
|
|
|
cvtColor( src, gray, CV_BGR2GRAY );
|
|
|
|
else
|
|
|
|
gray = src;
|
|
|
|
|
|
|
|
Size sz(cvRound(gray.cols * scale), cvRound(gray.rows * scale));
|
|
|
|
if (scale != 1)
|
|
|
|
resize(gray, resized, sz);
|
|
|
|
else
|
|
|
|
resized = gray;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int main( int argc, const char** argv )
|
|
|
|
{
|
|
|
|
if (argc != 3)
|
|
|
|
return help(), -1;
|
|
|
|
|
|
|
|
if (cv::gpu::getCudaEnabledDeviceCount() == 0)
|
|
|
|
return cerr << "No GPU found or the library is compiled without GPU support" << endl, -1;
|
|
|
|
|
|
|
|
VideoCapture capture;
|
|
|
|
|
|
|
|
string cascadeName = argv[1];
|
|
|
|
string inputName = argv[2];
|
|
|
|
|
|
|
|
cv::gpu::CascadeClassifier_GPU cascade_gpu;
|
|
|
|
if( !cascade_gpu.load( cascadeName ) )
|
|
|
|
return cerr << "ERROR: Could not load cascade classifier \"" << cascadeName << "\"" << endl, help(), -1;
|
|
|
|
|
|
|
|
cv::CascadeClassifier cascade_cpu;
|
|
|
|
if( !cascade_cpu.load( cascadeName ) )
|
|
|
|
return cerr << "ERROR: Could not load cascade classifier \"" << cascadeName << "\"" << endl, help(), -1;
|
|
|
|
|
|
|
|
Mat image = imread( inputName);
|
|
|
|
if( image.empty() )
|
|
|
|
if (!capture.open(inputName))
|
|
|
|
{
|
|
|
|
int camid = 0;
|
|
|
|
sscanf(inputName.c_str(), "%d", &camid);
|
|
|
|
if(!capture.open(camid))
|
|
|
|
cout << "Can't open source" << endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
namedWindow( "result", 1 );
|
|
|
|
|
|
|
|
Mat frame, frame_cpu, gray_cpu, resized_cpu, faces_downloaded, frameDisp;
|
|
|
|
vector<Rect> facesBuf_cpu;
|
|
|
|
|
|
|
|
GpuMat frame_gpu, gray_gpu, resized_gpu, facesBuf_gpu;
|
|
|
|
|
|
|
|
/* parameters */
|
|
|
|
bool useGPU = true;
|
|
|
|
double scale_factor = 1;
|
|
|
|
double font_scale = 0.8;
|
|
|
|
|
|
|
|
bool visualizeInPlace = false;
|
|
|
|
bool findLargestObject = false;
|
|
|
|
int minNeighbors = 4;
|
|
|
|
|
|
|
|
printf("\t<space> - toggle GPU/CPU\n");
|
|
|
|
printf("\tL - toggle lagest faces\n");
|
|
|
|
printf("\tV - toggle visualisation in-place (for GPU only)\n");
|
|
|
|
printf("\t1/q - inc/dec scale\n");
|
|
|
|
|
|
|
|
int detections_num;
|
|
|
|
for(;;)
|
|
|
|
{
|
|
|
|
if( capture.isOpened() )
|
|
|
|
{
|
|
|
|
capture >> frame;
|
|
|
|
if( frame.empty())
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
(image.empty() ? frame : image).copyTo(frame_cpu);
|
|
|
|
frame_gpu.upload( image.empty() ? frame : image);
|
|
|
|
|
|
|
|
convertAndReseize(frame_gpu, gray_gpu, resized_gpu, scale_factor);
|
|
|
|
convertAndReseize(frame_cpu, gray_cpu, resized_cpu, scale_factor);
|
|
|
|
|
|
|
|
cv::TickMeter tm;
|
|
|
|
tm.start();
|
|
|
|
|
|
|
|
if (useGPU)
|
|
|
|
{
|
|
|
|
cascade_gpu.visualizeInPlace = visualizeInPlace;
|
|
|
|
cascade_gpu.findLargestObject = findLargestObject;
|
|
|
|
|
|
|
|
detections_num = cascade_gpu.detectMultiScale( resized_gpu, facesBuf_gpu, 1.2, minNeighbors);
|
|
|
|
facesBuf_gpu.colRange(0, detections_num).download(faces_downloaded);
|
|
|
|
|
|
|
|
}
|
|
|
|
else /* so use CPU */
|
|
|
|
{
|
|
|
|
Size minSize = cascade_gpu.getClassifierSize();
|
|
|
|
if (findLargestObject)
|
|
|
|
{
|
|
|
|
float ratio = (float)std::min(frame.cols / minSize.width, frame.rows / minSize.height);
|
|
|
|
ratio = std::max(ratio / 2.5f, 1.f);
|
|
|
|
minSize = Size(cvRound(minSize.width * ratio), cvRound(minSize.height * ratio));
|
|
|
|
}
|
|
|
|
|
|
|
|
cascade_cpu.detectMultiScale(resized_cpu, facesBuf_cpu, 1.2, minNeighbors, (findLargestObject ? CV_HAAR_FIND_BIGGEST_OBJECT : 0) | CV_HAAR_SCALE_IMAGE, minSize);
|
|
|
|
detections_num = (int)facesBuf_cpu.size();
|
|
|
|
}
|
|
|
|
|
|
|
|
tm.stop();
|
|
|
|
printf( "detection time = %g ms\n", tm.getTimeMilli() );
|
|
|
|
|
|
|
|
if (useGPU)
|
|
|
|
resized_gpu.download(resized_cpu);
|
|
|
|
|
|
|
|
if (!visualizeInPlace || !useGPU)
|
|
|
|
if (detections_num)
|
|
|
|
{
|
|
|
|
Rect* faces = useGPU ? faces_downloaded.ptr<Rect>() : &facesBuf_cpu[0];
|
|
|
|
for(int i = 0; i < detections_num; ++i)
|
|
|
|
cv::rectangle(resized_cpu, faces[i], Scalar(255));
|
|
|
|
}
|
|
|
|
|
|
|
|
int tickness = font_scale > 0.75 ? 2 : 1;
|
|
|
|
|
|
|
|
Point text_pos(5, 25);
|
|
|
|
Scalar color = CV_RGB(255, 0, 0);
|
|
|
|
Size fontSz = cv::getTextSize("T[]", FONT_HERSHEY_SIMPLEX, font_scale, tickness, 0);
|
|
|
|
int offs = fontSz.height + 5;
|
|
|
|
|
|
|
|
cv::cvtColor(resized_cpu, frameDisp, CV_GRAY2BGR);
|
|
|
|
|
|
|
|
char buf[4096];
|
|
|
|
sprintf(buf, "%s, FPS = %0.3g", useGPU ? "GPU (device) " : "CPU (host)", 1.0/tm.getTimeSec());
|
|
|
|
putText(frameDisp, buf, text_pos, FONT_HERSHEY_SIMPLEX, font_scale, color, tickness);
|
|
|
|
sprintf(buf, "scale = %0.3g, [%d x %d] x scale, Min neighbors = %d", scale_factor, frame.cols, frame.rows, minNeighbors);
|
|
|
|
putText(frameDisp, buf, text_pos+=Point(0,offs), FONT_HERSHEY_SIMPLEX, font_scale, color, tickness);
|
|
|
|
putText(frameDisp, "Hotkeys: space, 1/Q, 2/E, 3/E, L, V, Esc", text_pos+=Point(0,offs), FONT_HERSHEY_SIMPLEX, font_scale, color, tickness);
|
|
|
|
|
|
|
|
if (findLargestObject)
|
|
|
|
putText(frameDisp, "FindLargestObject", text_pos+=Point(0,offs), FONT_HERSHEY_SIMPLEX, font_scale, color, tickness);
|
|
|
|
|
|
|
|
if (visualizeInPlace && useGPU)
|
|
|
|
putText(frameDisp, "VisualizeInPlace", text_pos+Point(0,offs), FONT_HERSHEY_SIMPLEX, font_scale, color, tickness);
|
|
|
|
|
|
|
|
cv::imshow( "result", frameDisp);
|
|
|
|
|
|
|
|
int key = waitKey( 5 );
|
|
|
|
if( key == 27)
|
|
|
|
break;
|
|
|
|
|
|
|
|
switch ((char)key)
|
|
|
|
{
|
|
|
|
case ' ': useGPU = !useGPU; printf("Using %s\n", useGPU ? "GPU" : "CPU");break;
|
|
|
|
case 'v': case 'V': visualizeInPlace = !visualizeInPlace; printf("VisualizeInPlace = %d\n", visualizeInPlace); break;
|
|
|
|
case 'l': case 'L': findLargestObject = !findLargestObject; printf("FindLargestObject = %d\n", findLargestObject); break;
|
|
|
|
case '1': scale_factor*=1.05; printf("Scale factor = %g\n", scale_factor); break;
|
|
|
|
case 'q': case 'Q':scale_factor/=1.05; printf("Scale factor = %g\n", scale_factor); break;
|
|
|
|
|
|
|
|
case '3': font_scale*=1.05; printf("Fond scale = %g\n", font_scale); break;
|
|
|
|
case 'e': case 'E':font_scale/=1.05; printf("Fond scale = %g\n", font_scale); break;
|
|
|
|
|
|
|
|
case '2': ++minNeighbors; printf("Min Neighbors = %d\n", minNeighbors); break;
|
|
|
|
case 'w': case 'W':minNeighbors = max(minNeighbors-1, 0); printf("Min Neighbors = %d\n", minNeighbors); break;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|