Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

461 lines
13 KiB

#include <iostream>
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN 1
#define NOMINMAX 1
#include <windows.h>
#endif
#if defined(__APPLE__)
#include <OpenGL/gl.h>
#include <OpenGL/glu.h>
#else
#include <GL/gl.h>
#include <GL/glu.h>
#endif
#include "opencv2/core.hpp"
#include "opencv2/core/opengl.hpp"
#include "opencv2/3d.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
using namespace std;
using namespace cv;
using namespace cv::cuda;
// model data should be identical to the code from tests
enum class ModelType
{
Empty = 0,
File = 1,
Clipping = 2,
Color = 3,
Centered = 4
};
static void generateNormals(const std::vector<Vec3f>& points, const std::vector<std::vector<int>>& indices,
std::vector<Vec3f>& normals)
{
std::vector<std::vector<Vec3f>> preNormals(points.size(), std::vector<Vec3f>());
for (const auto& tri : indices)
{
Vec3f p0 = points[tri[0]];
Vec3f p1 = points[tri[1]];
Vec3f p2 = points[tri[2]];
Vec3f cross = cv::normalize((p1 - p0).cross(p2 - p0));
for (int i = 0; i < 3; i++)
{
preNormals[tri[i]].push_back(cross);
}
}
normals.reserve(points.size());
for (const auto& pn : preNormals)
{
Vec3f sum { };
for (const auto& n : pn)
{
sum += n;
}
normals.push_back(cv::normalize(sum));
}
}
class ModelData
{
public:
ModelData(ModelType type = ModelType::Empty, std::string objPath = { })
{
switch (type)
{
case ModelType::Empty:
{
position = Vec3d(0.0, 0.0, 0.0);
lookat = Vec3d(0.0, 0.0, 0.0);
upVector = Vec3d(0.0, 1.0, 0.0);
fovy = 45.0;
vertices = std::vector<Vec3f>(4, {2.0f, 0, -2.0f});
colors = std::vector<Vec3f>(4, {0, 0, 1.0f});
indices = { };
}
break;
case ModelType::File:
{
position = Vec3d( 1.9, 0.4, 1.3);
lookat = Vec3d( 0.0, 0.0, 0.0);
upVector = Vec3d( 0.0, 1.0, 0.0);
fovy = 45.0;
objectPath = objPath;
std::vector<vector<int>> indvec;
loadMesh(objectPath, vertices, indvec);
// using per-vertex normals as colors
generateNormals(vertices, indvec, colors);
if (vertices.size() != colors.size())
{
std::runtime_error("Model should contain normals for each vertex");
}
for (const auto &vec : indvec)
{
indices.push_back({vec[0], vec[1], vec[2]});
}
for (auto &color : colors)
{
color = Vec3f(abs(color[0]), abs(color[1]), abs(color[2]));
}
}
break;
case ModelType::Clipping:
{
position = Vec3d(0.0, 0.0, 5.0);
lookat = Vec3d(0.0, 0.0, 0.0);
upVector = Vec3d(0.0, 1.0, 0.0);
fovy = 45.0;
vertices =
{
{ 2.0, 0.0, -2.0}, { 0.0, -6.0, -2.0}, {-2.0, 0.0, -2.0},
{ 3.5, -1.0, -5.0}, { 2.5, -2.5, -5.0}, {-1.0, 1.0, -5.0},
{-6.5, -1.0, -3.0}, {-2.5, -2.0, -3.0}, { 1.0, 1.0, -5.0},
};
indices = { {0, 1, 2}, {3, 4, 5}, {6, 7, 8} };
Vec3f col1(217.0, 238.0, 185.0);
Vec3f col2(185.0, 217.0, 238.0);
Vec3f col3(150.0, 10.0, 238.0);
col1 *= (1.f / 255.f);
col2 *= (1.f / 255.f);
col3 *= (1.f / 255.f);
colors =
{
col1, col2, col3,
col2, col3, col1,
col3, col1, col2,
};
}
break;
case ModelType::Centered:
{
position = Vec3d(0.0, 0.0, 5.0);
lookat = Vec3d(0.0, 0.0, 0.0);
upVector = Vec3d(0.0, 1.0, 0.0);
fovy = 45.0;
vertices =
{
{ 2.0, 0.0, -2.0}, { 0.0, -2.0, -2.0}, {-2.0, 0.0, -2.0},
{ 3.5, -1.0, -5.0}, { 2.5, -1.5, -5.0}, {-1.0, 0.5, -5.0},
};
indices = { {0, 1, 2}, {3, 4, 5} };
Vec3f col1(217.0, 238.0, 185.0);
Vec3f col2(185.0, 217.0, 238.0);
col1 *= (1.f / 255.f);
col2 *= (1.f / 255.f);
colors =
{
col1, col2, col1,
col2, col1, col2,
};
}
break;
case ModelType::Color:
{
position = Vec3d(0.0, 0.0, 5.0);
lookat = Vec3d(0.0, 0.0, 0.0);
upVector = Vec3d(0.0, 1.0, 0.0);
fovy = 60.0;
vertices =
{
{ 2.0, 0.0, -2.0},
{ 0.0, 2.0, -3.0},
{-2.0, 0.0, -2.0},
{ 0.0, -2.0, 1.0},
};
indices = { {0, 1, 2}, {0, 2, 3} };
colors =
{
{ 0.0f, 0.0f, 1.0f},
{ 0.0f, 1.0f, 0.0f},
{ 1.0f, 0.0f, 0.0f},
{ 0.0f, 1.0f, 0.0f},
};
}
break;
default:
CV_Error(Error::StsBadArg, "Unknown model type");
break;
}
}
Vec3d position;
Vec3d lookat;
Vec3d upVector;
double fovy;
std::vector<Vec3f> vertices;
std::vector<Vec3i> indices;
std::vector<Vec3f> colors;
string objectPath;
};
struct DrawData
{
ogl::Arrays arr;
ogl::Buffer indices;
};
void draw(void* userdata);
void draw(void* userdata)
{
DrawData* data = static_cast<DrawData*>(userdata);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
ogl::render(data->arr, data->indices, ogl::TRIANGLES);
}
static void generateImage(cv::Size imgSz, TriangleShadingType shadingType, TriangleCullingMode cullingMode,
ModelType modelType, std::string modelPath, cv::Mat& colorImage, cv::Mat& depthImage)
{
namedWindow("OpenGL", WINDOW_OPENGL);
resizeWindow("OpenGL", imgSz.width, imgSz.height);
ModelData modelData(modelType, modelPath);
DrawData data;
std::vector<Vec3f> vertices;
std::vector<Vec4f> colors4f;
std::vector<int> idxLinear;
if (shadingType == RASTERIZE_SHADING_FLAT)
{
// rearrange vertices and colors for flat shading
int ctr = 0;
for (const auto& idx : modelData.indices)
{
for (int i = 0; i < 3; i++)
{
vertices.push_back(modelData.vertices[idx[i]]);
idxLinear.push_back(ctr++);
}
Vec3f ci = modelData.colors[idx[0]];
for (int i = 0; i < 3; i++)
{
colors4f.emplace_back(ci[0], ci[1], ci[2], 1.f);
}
}
}
else
{
vertices = modelData.vertices;
for (const auto& c : modelData.colors)
{
Vec3f ci = (shadingType == RASTERIZE_SHADING_SHADED) ? c: cv::Vec3f::all(1.f);
colors4f.emplace_back(ci[0], ci[1], ci[2], 1.0);
}
for (const auto& idx : modelData.indices)
{
for (int i = 0; i < 3; i++)
{
idxLinear.push_back(idx[i]);
}
}
}
data.arr.setVertexArray(vertices);
data.arr.setColorArray(colors4f);
data.indices.copyFrom(idxLinear);
double zNear = 0.1, zFar = 50;
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(modelData.fovy, (double)imgSz.width / imgSz.height, zNear, zFar);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
//gluLookAt(0, 0, 5, 0, 0, 0, 0, 1, 0);
gluLookAt(modelData.position[0], modelData.position[1], modelData.position[2],
modelData.lookat [0], modelData.lookat [1], modelData.lookat [2],
modelData.upVector[0], modelData.upVector[1], modelData.upVector[2]);
if (cullingMode == RASTERIZE_CULLING_NONE)
{
glDisable(GL_CULL_FACE);
}
else
{
glEnable(GL_CULL_FACE);
glCullFace(GL_FRONT);
if (cullingMode == RASTERIZE_CULLING_CW)
{
glFrontFace(GL_CW);
}
else
{
glFrontFace(GL_CCW);
}
}
glEnable(GL_DEPTH_TEST);
cv::setOpenGlDrawCallback("OpenGL", draw, &data);
const int framesToSkip = 10;
for (int f = 0; f < framesToSkip; f++)
{
updateWindow("OpenGL");
colorImage = cv::Mat(imgSz.height, imgSz.width, CV_8UC3);
glReadPixels(0, 0, imgSz.width, imgSz.height, GL_RGB, GL_UNSIGNED_BYTE, colorImage.data);
cv::cvtColor(colorImage, colorImage, cv::COLOR_RGB2BGR);
cv::flip(colorImage, colorImage, 0);
depthImage = cv::Mat(imgSz.height, imgSz.width, CV_32F);
glReadPixels(0, 0, imgSz.width, imgSz.height, GL_DEPTH_COMPONENT, GL_FLOAT, depthImage.data);
// map from [0, 1] to [zNear, zFar]
for (auto it = depthImage.begin<float>(); it != depthImage.end<float>(); ++it)
{
*it = (float)(zNear * zFar / (double(*it) * (zNear - zFar) + zFar));
}
cv::flip(depthImage, depthImage, 0);
depthImage.convertTo(depthImage, CV_16U, 1000.0);
char key = (char)waitKey(40);
if (key == 27)
break;
}
cv::setOpenGlDrawCallback("OpenGL", 0, 0);
cv::destroyAllWindows();
}
int main(int argc, char* argv[])
{
cv::CommandLineParser parser(argc, argv,
"{ help h usage ? | | show this message }"
"{ outPath | | output path for generated images }"
"{ modelPath | | path to 3d model to render }"
);
parser.about("This app is used to generate test data for triangleRasterize() function");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
std::string modelPath = parser.get<std::string>("modelPath");
if (modelPath.empty())
{
std::cout << "No model path given" << std::endl;
return -1;
}
std::string outPath = parser.get<std::string>("outPath");
if (outPath.empty())
{
std::cout << "No output path given" << std::endl;
return -1;
}
std::array<cv::Size, 4> resolutions = { cv::Size {700, 700}, cv::Size {640, 480}, cv::Size(256, 256), cv::Size(320, 240) };
for (const auto& res : resolutions)
{
for (const auto shadingType : {
RASTERIZE_SHADING_WHITE,
RASTERIZE_SHADING_FLAT,
RASTERIZE_SHADING_SHADED
})
{
std::string shadingName;
switch (shadingType)
{
case RASTERIZE_SHADING_WHITE: shadingName = "White"; break;
case RASTERIZE_SHADING_FLAT: shadingName = "Flat"; break;
case RASTERIZE_SHADING_SHADED: shadingName = "Shaded"; break;
default:
break;
}
for (const auto cullingMode : {
RASTERIZE_CULLING_NONE,
RASTERIZE_CULLING_CW,
RASTERIZE_CULLING_CCW
})
{
std::string cullingName;
switch (cullingMode)
{
case RASTERIZE_CULLING_NONE: cullingName = "None"; break;
case RASTERIZE_CULLING_CW: cullingName = "CW"; break;
case RASTERIZE_CULLING_CCW: cullingName = "CCW"; break;
default: break;
}
for (const auto modelType : {
ModelType::File,
ModelType::Clipping,
ModelType::Color,
ModelType::Centered,
})
{
std::string modelName;
switch (modelType)
{
case ModelType::File: modelName = "File"; break;
case ModelType::Clipping: modelName = "Clipping"; break;
case ModelType::Color: modelName = "Color"; break;
case ModelType::Centered: modelName = "Centered"; break;
default:
break;
}
std::string suffix = cv::format("%s_%dx%d_Cull%s", modelName.c_str(), res.width, res.height, cullingName.c_str());
std::cout << suffix + "_" + shadingName << "..." << std::endl;
cv::Mat colorImage, depthImage;
generateImage(res, shadingType, cullingMode, modelType, modelPath, colorImage, depthImage);
std::string gtPathColor = outPath + "/example_image_" + suffix + "_" + shadingName + ".png";
std::string gtPathDepth = outPath + "/depth_image_" + suffix + ".png";
cv::imwrite(gtPathColor, colorImage);
cv::imwrite(gtPathDepth, depthImage);
}
}
}
}
return 0;
}