|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
|
|
|
|
// Digital Ltd. LLC
|
|
|
|
//
|
|
|
|
// All rights reserved.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
|
|
// in the documentation and/or other materials provided with the
|
|
|
|
// distribution.
|
|
|
|
// * Neither the name of Industrial Light & Magic nor the names of
|
|
|
|
// its contributors may be used to endorse or promote products derived
|
|
|
|
// from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
//
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// Primary authors:
|
|
|
|
// Florian Kainz <kainz@ilm.com>
|
|
|
|
// Rod Bogart <rgb@ilm.com>
|
|
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// half -- a 16-bit floating point number class:
|
|
|
|
//
|
|
|
|
// Type half can represent positive and negative numbers whose
|
|
|
|
// magnitude is between roughly 6.1e-5 and 6.5e+4 with a relative
|
|
|
|
// error of 9.8e-4; numbers smaller than 6.1e-5 can be represented
|
|
|
|
// with an absolute error of 6.0e-8. All integers from -2048 to
|
|
|
|
// +2048 can be represented exactly.
|
|
|
|
//
|
|
|
|
// Type half behaves (almost) like the built-in C++ floating point
|
|
|
|
// types. In arithmetic expressions, half, float and double can be
|
|
|
|
// mixed freely. Here are a few examples:
|
|
|
|
//
|
|
|
|
// half a (3.5);
|
|
|
|
// float b (a + sqrt (a));
|
|
|
|
// a += b;
|
|
|
|
// b += a;
|
|
|
|
// b = a + 7;
|
|
|
|
//
|
|
|
|
// Conversions from half to float are lossless; all half numbers
|
|
|
|
// are exactly representable as floats.
|
|
|
|
//
|
|
|
|
// Conversions from float to half may not preserve a float's value
|
|
|
|
// exactly. If a float is not representable as a half, then the
|
|
|
|
// float value is rounded to the nearest representable half. If a
|
|
|
|
// float value is exactly in the middle between the two closest
|
|
|
|
// representable half values, then the float value is rounded to
|
|
|
|
// the closest half whose least significant bit is zero.
|
|
|
|
//
|
|
|
|
// Overflows during float-to-half conversions cause arithmetic
|
|
|
|
// exceptions. An overflow occurs when the float value to be
|
|
|
|
// converted is too large to be represented as a half, or if the
|
|
|
|
// float value is an infinity or a NAN.
|
|
|
|
//
|
|
|
|
// The implementation of type half makes the following assumptions
|
|
|
|
// about the implementation of the built-in C++ types:
|
|
|
|
//
|
|
|
|
// float is an IEEE 754 single-precision number
|
|
|
|
// sizeof (float) == 4
|
|
|
|
// sizeof (unsigned int) == sizeof (float)
|
|
|
|
// alignof (unsigned int) == alignof (float)
|
|
|
|
// sizeof (unsigned short) == 2
|
|
|
|
//
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
|
|
|
|
#ifndef _HALF_H_
|
|
|
|
#define _HALF_H_
|
|
|
|
|
|
|
|
#include "halfExport.h" // for definition of HALF_EXPORT
|
|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
class half
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
|
|
|
|
//-------------
|
|
|
|
// Constructors
|
|
|
|
//-------------
|
|
|
|
|
|
|
|
half (); // no initialization
|
|
|
|
half (float f);
|
|
|
|
|
|
|
|
|
|
|
|
//--------------------
|
|
|
|
// Conversion to float
|
|
|
|
//--------------------
|
|
|
|
|
|
|
|
operator float () const;
|
|
|
|
|
|
|
|
|
|
|
|
//------------
|
|
|
|
// Unary minus
|
|
|
|
//------------
|
|
|
|
|
|
|
|
half operator - () const;
|
|
|
|
|
|
|
|
|
|
|
|
//-----------
|
|
|
|
// Assignment
|
|
|
|
//-----------
|
|
|
|
|
|
|
|
half & operator = (half h);
|
|
|
|
half & operator = (float f);
|
|
|
|
|
|
|
|
half & operator += (half h);
|
|
|
|
half & operator += (float f);
|
|
|
|
|
|
|
|
half & operator -= (half h);
|
|
|
|
half & operator -= (float f);
|
|
|
|
|
|
|
|
half & operator *= (half h);
|
|
|
|
half & operator *= (float f);
|
|
|
|
|
|
|
|
half & operator /= (half h);
|
|
|
|
half & operator /= (float f);
|
|
|
|
|
|
|
|
|
|
|
|
//---------------------------------------------------------
|
|
|
|
// Round to n-bit precision (n should be between 0 and 10).
|
|
|
|
// After rounding, the significand's 10-n least significant
|
|
|
|
// bits will be zero.
|
|
|
|
//---------------------------------------------------------
|
|
|
|
|
|
|
|
half round (unsigned int n) const;
|
|
|
|
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------
|
|
|
|
// Classification:
|
|
|
|
//
|
|
|
|
// h.isFinite() returns true if h is a normalized number,
|
|
|
|
// a denormalized number or zero
|
|
|
|
//
|
|
|
|
// h.isNormalized() returns true if h is a normalized number
|
|
|
|
//
|
|
|
|
// h.isDenormalized() returns true if h is a denormalized number
|
|
|
|
//
|
|
|
|
// h.isZero() returns true if h is zero
|
|
|
|
//
|
|
|
|
// h.isNan() returns true if h is a NAN
|
|
|
|
//
|
|
|
|
// h.isInfinity() returns true if h is a positive
|
|
|
|
// or a negative infinity
|
|
|
|
//
|
|
|
|
// h.isNegative() returns true if the sign bit of h
|
|
|
|
// is set (negative)
|
|
|
|
//--------------------------------------------------------------------
|
|
|
|
|
|
|
|
bool isFinite () const;
|
|
|
|
bool isNormalized () const;
|
|
|
|
bool isDenormalized () const;
|
|
|
|
bool isZero () const;
|
|
|
|
bool isNan () const;
|
|
|
|
bool isInfinity () const;
|
|
|
|
bool isNegative () const;
|
|
|
|
|
|
|
|
|
|
|
|
//--------------------------------------------
|
|
|
|
// Special values
|
|
|
|
//
|
|
|
|
// posInf() returns +infinity
|
|
|
|
//
|
|
|
|
// negInf() returns -infinity
|
|
|
|
//
|
|
|
|
// qNan() returns a NAN with the bit
|
|
|
|
// pattern 0111111111111111
|
|
|
|
//
|
|
|
|
// sNan() returns a NAN with the bit
|
|
|
|
// pattern 0111110111111111
|
|
|
|
//--------------------------------------------
|
|
|
|
|
|
|
|
static half posInf ();
|
|
|
|
static half negInf ();
|
|
|
|
static half qNan ();
|
|
|
|
static half sNan ();
|
|
|
|
|
|
|
|
|
|
|
|
//--------------------------------------
|
|
|
|
// Access to the internal representation
|
|
|
|
//--------------------------------------
|
|
|
|
|
|
|
|
HALF_EXPORT unsigned short bits () const;
|
|
|
|
HALF_EXPORT void setBits (unsigned short bits);
|
|
|
|
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
union uif
|
|
|
|
{
|
|
|
|
unsigned int i;
|
|
|
|
float f;
|
|
|
|
};
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
HALF_EXPORT static short convert (int i);
|
|
|
|
HALF_EXPORT static float overflow ();
|
|
|
|
|
|
|
|
unsigned short _h;
|
|
|
|
|
|
|
|
HALF_EXPORT static const uif _toFloat[1 << 16];
|
|
|
|
HALF_EXPORT static const unsigned short _eLut[1 << 9];
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//-----------
|
|
|
|
// Stream I/O
|
|
|
|
//-----------
|
|
|
|
|
|
|
|
HALF_EXPORT std::ostream & operator << (std::ostream &os, half h);
|
|
|
|
HALF_EXPORT std::istream & operator >> (std::istream &is, half &h);
|
|
|
|
|
|
|
|
|
|
|
|
//----------
|
|
|
|
// Debugging
|
|
|
|
//----------
|
|
|
|
|
|
|
|
HALF_EXPORT void printBits (std::ostream &os, half h);
|
|
|
|
HALF_EXPORT void printBits (std::ostream &os, float f);
|
|
|
|
HALF_EXPORT void printBits (char c[19], half h);
|
|
|
|
HALF_EXPORT void printBits (char c[35], float f);
|
|
|
|
|
|
|
|
|
|
|
|
//-------------------------------------------------------------------------
|
|
|
|
// Limits
|
|
|
|
//
|
|
|
|
// Visual C++ will complain if HALF_MIN, HALF_NRM_MIN etc. are not float
|
|
|
|
// constants, but at least one other compiler (gcc 2.96) produces incorrect
|
|
|
|
// results if they are.
|
|
|
|
//-------------------------------------------------------------------------
|
|
|
|
|
|
|
|
#if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
|
|
|
|
|
|
|
|
#define HALF_MIN 5.96046448e-08f // Smallest positive half
|
|
|
|
|
|
|
|
#define HALF_NRM_MIN 6.10351562e-05f // Smallest positive normalized half
|
|
|
|
|
|
|
|
#define HALF_MAX 65504.0f // Largest positive half
|
|
|
|
|
|
|
|
#define HALF_EPSILON 0.00097656f // Smallest positive e for which
|
|
|
|
// half (1.0 + e) != half (1.0)
|
|
|
|
#else
|
|
|
|
|
|
|
|
#define HALF_MIN 5.96046448e-08 // Smallest positive half
|
|
|
|
|
|
|
|
#define HALF_NRM_MIN 6.10351562e-05 // Smallest positive normalized half
|
|
|
|
|
|
|
|
#define HALF_MAX 65504.0 // Largest positive half
|
|
|
|
|
|
|
|
#define HALF_EPSILON 0.00097656 // Smallest positive e for which
|
|
|
|
// half (1.0 + e) != half (1.0)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#define HALF_MANT_DIG 11 // Number of digits in mantissa
|
|
|
|
// (significand + hidden leading 1)
|
|
|
|
|
|
|
|
#define HALF_DIG 2 // Number of base 10 digits that
|
|
|
|
// can be represented without change
|
|
|
|
|
|
|
|
#define HALF_DECIMAL_DIG 5 // Number of base-10 digits that are
|
|
|
|
// necessary to uniquely represent all
|
|
|
|
// distinct values
|
|
|
|
|
|
|
|
#define HALF_RADIX 2 // Base of the exponent
|
|
|
|
|
|
|
|
#define HALF_MIN_EXP -13 // Minimum negative integer such that
|
|
|
|
// HALF_RADIX raised to the power of
|
|
|
|
// one less than that integer is a
|
|
|
|
// normalized half
|
|
|
|
|
|
|
|
#define HALF_MAX_EXP 16 // Maximum positive integer such that
|
|
|
|
// HALF_RADIX raised to the power of
|
|
|
|
// one less than that integer is a
|
|
|
|
// normalized half
|
|
|
|
|
|
|
|
#define HALF_MIN_10_EXP -4 // Minimum positive integer such
|
|
|
|
// that 10 raised to that power is
|
|
|
|
// a normalized half
|
|
|
|
|
|
|
|
#define HALF_MAX_10_EXP 4 // Maximum positive integer such
|
|
|
|
// that 10 raised to that power is
|
|
|
|
// a normalized half
|
|
|
|
|
|
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// Implementation --
|
|
|
|
//
|
|
|
|
// Representation of a float:
|
|
|
|
//
|
|
|
|
// We assume that a float, f, is an IEEE 754 single-precision
|
|
|
|
// floating point number, whose bits are arranged as follows:
|
|
|
|
//
|
|
|
|
// 31 (msb)
|
|
|
|
// |
|
|
|
|
// | 30 23
|
|
|
|
// | | |
|
|
|
|
// | | | 22 0 (lsb)
|
|
|
|
// | | | | |
|
|
|
|
// X XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX
|
|
|
|
//
|
|
|
|
// s e m
|
|
|
|
//
|
|
|
|
// S is the sign-bit, e is the exponent and m is the significand.
|
|
|
|
//
|
|
|
|
// If e is between 1 and 254, f is a normalized number:
|
|
|
|
//
|
|
|
|
// s e-127
|
|
|
|
// f = (-1) * 2 * 1.m
|
|
|
|
//
|
|
|
|
// If e is 0, and m is not zero, f is a denormalized number:
|
|
|
|
//
|
|
|
|
// s -126
|
|
|
|
// f = (-1) * 2 * 0.m
|
|
|
|
//
|
|
|
|
// If e and m are both zero, f is zero:
|
|
|
|
//
|
|
|
|
// f = 0.0
|
|
|
|
//
|
|
|
|
// If e is 255, f is an "infinity" or "not a number" (NAN),
|
|
|
|
// depending on whether m is zero or not.
|
|
|
|
//
|
|
|
|
// Examples:
|
|
|
|
//
|
|
|
|
// 0 00000000 00000000000000000000000 = 0.0
|
|
|
|
// 0 01111110 00000000000000000000000 = 0.5
|
|
|
|
// 0 01111111 00000000000000000000000 = 1.0
|
|
|
|
// 0 10000000 00000000000000000000000 = 2.0
|
|
|
|
// 0 10000000 10000000000000000000000 = 3.0
|
|
|
|
// 1 10000101 11110000010000000000000 = -124.0625
|
|
|
|
// 0 11111111 00000000000000000000000 = +infinity
|
|
|
|
// 1 11111111 00000000000000000000000 = -infinity
|
|
|
|
// 0 11111111 10000000000000000000000 = NAN
|
|
|
|
// 1 11111111 11111111111111111111111 = NAN
|
|
|
|
//
|
|
|
|
// Representation of a half:
|
|
|
|
//
|
|
|
|
// Here is the bit-layout for a half number, h:
|
|
|
|
//
|
|
|
|
// 15 (msb)
|
|
|
|
// |
|
|
|
|
// | 14 10
|
|
|
|
// | | |
|
|
|
|
// | | | 9 0 (lsb)
|
|
|
|
// | | | | |
|
|
|
|
// X XXXXX XXXXXXXXXX
|
|
|
|
//
|
|
|
|
// s e m
|
|
|
|
//
|
|
|
|
// S is the sign-bit, e is the exponent and m is the significand.
|
|
|
|
//
|
|
|
|
// If e is between 1 and 30, h is a normalized number:
|
|
|
|
//
|
|
|
|
// s e-15
|
|
|
|
// h = (-1) * 2 * 1.m
|
|
|
|
//
|
|
|
|
// If e is 0, and m is not zero, h is a denormalized number:
|
|
|
|
//
|
|
|
|
// S -14
|
|
|
|
// h = (-1) * 2 * 0.m
|
|
|
|
//
|
|
|
|
// If e and m are both zero, h is zero:
|
|
|
|
//
|
|
|
|
// h = 0.0
|
|
|
|
//
|
|
|
|
// If e is 31, h is an "infinity" or "not a number" (NAN),
|
|
|
|
// depending on whether m is zero or not.
|
|
|
|
//
|
|
|
|
// Examples:
|
|
|
|
//
|
|
|
|
// 0 00000 0000000000 = 0.0
|
|
|
|
// 0 01110 0000000000 = 0.5
|
|
|
|
// 0 01111 0000000000 = 1.0
|
|
|
|
// 0 10000 0000000000 = 2.0
|
|
|
|
// 0 10000 1000000000 = 3.0
|
|
|
|
// 1 10101 1111000001 = -124.0625
|
|
|
|
// 0 11111 0000000000 = +infinity
|
|
|
|
// 1 11111 0000000000 = -infinity
|
|
|
|
// 0 11111 1000000000 = NAN
|
|
|
|
// 1 11111 1111111111 = NAN
|
|
|
|
//
|
|
|
|
// Conversion:
|
|
|
|
//
|
|
|
|
// Converting from a float to a half requires some non-trivial bit
|
|
|
|
// manipulations. In some cases, this makes conversion relatively
|
|
|
|
// slow, but the most common case is accelerated via table lookups.
|
|
|
|
//
|
|
|
|
// Converting back from a half to a float is easier because we don't
|
|
|
|
// have to do any rounding. In addition, there are only 65536
|
|
|
|
// different half numbers; we can convert each of those numbers once
|
|
|
|
// and store the results in a table. Later, all conversions can be
|
|
|
|
// done using only simple table lookups.
|
|
|
|
//
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
//--------------------
|
|
|
|
// Simple constructors
|
|
|
|
//--------------------
|
|
|
|
|
|
|
|
inline
|
|
|
|
half::half ()
|
|
|
|
{
|
|
|
|
// no initialization
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//----------------------------
|
|
|
|
// Half-from-float constructor
|
|
|
|
//----------------------------
|
|
|
|
|
|
|
|
inline
|
|
|
|
half::half (float f)
|
|
|
|
{
|
|
|
|
uif x;
|
|
|
|
|
|
|
|
x.f = f;
|
|
|
|
|
|
|
|
if (f == 0)
|
|
|
|
{
|
|
|
|
//
|
|
|
|
// Common special case - zero.
|
|
|
|
// Preserve the zero's sign bit.
|
|
|
|
//
|
|
|
|
|
|
|
|
_h = (x.i >> 16);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
//
|
|
|
|
// We extract the combined sign and exponent, e, from our
|
|
|
|
// floating-point number, f. Then we convert e to the sign
|
|
|
|
// and exponent of the half number via a table lookup.
|
|
|
|
//
|
|
|
|
// For the most common case, where a normalized half is produced,
|
|
|
|
// the table lookup returns a non-zero value; in this case, all
|
|
|
|
// we have to do is round f's significand to 10 bits and combine
|
|
|
|
// the result with e.
|
|
|
|
//
|
|
|
|
// For all other cases (overflow, zeroes, denormalized numbers
|
|
|
|
// resulting from underflow, infinities and NANs), the table
|
|
|
|
// lookup returns zero, and we call a longer, non-inline function
|
|
|
|
// to do the float-to-half conversion.
|
|
|
|
//
|
|
|
|
|
|
|
|
int e = (x.i >> 23) & 0x000001ff;
|
|
|
|
|
|
|
|
e = _eLut[e];
|
|
|
|
|
|
|
|
if (e)
|
|
|
|
{
|
|
|
|
//
|
|
|
|
// Simple case - round the significand, m, to 10
|
|
|
|
// bits and combine it with the sign and exponent.
|
|
|
|
//
|
|
|
|
|
|
|
|
int m = x.i & 0x007fffff;
|
|
|
|
_h = (unsigned short)(e + ((m + 0x00000fff + ((m >> 13) & 1)) >> 13));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
//
|
|
|
|
// Difficult case - call a function.
|
|
|
|
//
|
|
|
|
|
|
|
|
_h = convert (x.i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//------------------------------------------
|
|
|
|
// Half-to-float conversion via table lookup
|
|
|
|
//------------------------------------------
|
|
|
|
|
|
|
|
inline
|
|
|
|
half::operator float () const
|
|
|
|
{
|
|
|
|
return _toFloat[_h].f;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//-------------------------
|
|
|
|
// Round to n-bit precision
|
|
|
|
//-------------------------
|
|
|
|
|
|
|
|
inline half
|
|
|
|
half::round (unsigned int n) const
|
|
|
|
{
|
|
|
|
//
|
|
|
|
// Parameter check.
|
|
|
|
//
|
|
|
|
|
|
|
|
if (n >= 10)
|
|
|
|
return *this;
|
|
|
|
|
|
|
|
//
|
|
|
|
// Disassemble h into the sign, s,
|
|
|
|
// and the combined exponent and significand, e.
|
|
|
|
//
|
|
|
|
|
|
|
|
unsigned short s = _h & 0x8000;
|
|
|
|
unsigned short e = _h & 0x7fff;
|
|
|
|
|
|
|
|
//
|
|
|
|
// Round the exponent and significand to the nearest value
|
|
|
|
// where ones occur only in the (10-n) most significant bits.
|
|
|
|
// Note that the exponent adjusts automatically if rounding
|
|
|
|
// up causes the significand to overflow.
|
|
|
|
//
|
|
|
|
|
|
|
|
e >>= 9 - n;
|
|
|
|
e += e & 1;
|
|
|
|
e <<= 9 - n;
|
|
|
|
|
|
|
|
//
|
|
|
|
// Check for exponent overflow.
|
|
|
|
//
|
|
|
|
|
|
|
|
if (e >= 0x7c00)
|
|
|
|
{
|
|
|
|
//
|
|
|
|
// Overflow occurred -- truncate instead of rounding.
|
|
|
|
//
|
|
|
|
|
|
|
|
e = _h;
|
|
|
|
e >>= 10 - n;
|
|
|
|
e <<= 10 - n;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Put the original sign bit back.
|
|
|
|
//
|
|
|
|
|
|
|
|
half h;
|
|
|
|
h._h = s | e;
|
|
|
|
|
|
|
|
return h;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//-----------------------
|
|
|
|
// Other inline functions
|
|
|
|
//-----------------------
|
|
|
|
|
|
|
|
inline half
|
|
|
|
half::operator - () const
|
|
|
|
{
|
|
|
|
half h;
|
|
|
|
h._h = _h ^ 0x8000;
|
|
|
|
return h;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline half &
|
|
|
|
half::operator = (half h)
|
|
|
|
{
|
|
|
|
_h = h._h;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline half &
|
|
|
|
half::operator = (float f)
|
|
|
|
{
|
|
|
|
*this = half (f);
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline half &
|
|
|
|
half::operator += (half h)
|
|
|
|
{
|
|
|
|
*this = half (float (*this) + float (h));
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline half &
|
|
|
|
half::operator += (float f)
|
|
|
|
{
|
|
|
|
*this = half (float (*this) + f);
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline half &
|
|
|
|
half::operator -= (half h)
|
|
|
|
{
|
|
|
|
*this = half (float (*this) - float (h));
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline half &
|
|
|
|
half::operator -= (float f)
|
|
|
|
{
|
|
|
|
*this = half (float (*this) - f);
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline half &
|
|
|
|
half::operator *= (half h)
|
|
|
|
{
|
|
|
|
*this = half (float (*this) * float (h));
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline half &
|
|
|
|
half::operator *= (float f)
|
|
|
|
{
|
|
|
|
*this = half (float (*this) * f);
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline half &
|
|
|
|
half::operator /= (half h)
|
|
|
|
{
|
|
|
|
*this = half (float (*this) / float (h));
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline half &
|
|
|
|
half::operator /= (float f)
|
|
|
|
{
|
|
|
|
*this = half (float (*this) / f);
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline bool
|
|
|
|
half::isFinite () const
|
|
|
|
{
|
|
|
|
unsigned short e = (_h >> 10) & 0x001f;
|
|
|
|
return e < 31;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline bool
|
|
|
|
half::isNormalized () const
|
|
|
|
{
|
|
|
|
unsigned short e = (_h >> 10) & 0x001f;
|
|
|
|
return e > 0 && e < 31;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline bool
|
|
|
|
half::isDenormalized () const
|
|
|
|
{
|
|
|
|
unsigned short e = (_h >> 10) & 0x001f;
|
|
|
|
unsigned short m = _h & 0x3ff;
|
|
|
|
return e == 0 && m != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline bool
|
|
|
|
half::isZero () const
|
|
|
|
{
|
|
|
|
return (_h & 0x7fff) == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline bool
|
|
|
|
half::isNan () const
|
|
|
|
{
|
|
|
|
unsigned short e = (_h >> 10) & 0x001f;
|
|
|
|
unsigned short m = _h & 0x3ff;
|
|
|
|
return e == 31 && m != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline bool
|
|
|
|
half::isInfinity () const
|
|
|
|
{
|
|
|
|
unsigned short e = (_h >> 10) & 0x001f;
|
|
|
|
unsigned short m = _h & 0x3ff;
|
|
|
|
return e == 31 && m == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline bool
|
|
|
|
half::isNegative () const
|
|
|
|
{
|
|
|
|
return (_h & 0x8000) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline half
|
|
|
|
half::posInf ()
|
|
|
|
{
|
|
|
|
half h;
|
|
|
|
h._h = 0x7c00;
|
|
|
|
return h;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline half
|
|
|
|
half::negInf ()
|
|
|
|
{
|
|
|
|
half h;
|
|
|
|
h._h = 0xfc00;
|
|
|
|
return h;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline half
|
|
|
|
half::qNan ()
|
|
|
|
{
|
|
|
|
half h;
|
|
|
|
h._h = 0x7fff;
|
|
|
|
return h;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline half
|
|
|
|
half::sNan ()
|
|
|
|
{
|
|
|
|
half h;
|
|
|
|
h._h = 0x7dff;
|
|
|
|
return h;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline unsigned short
|
|
|
|
half::bits () const
|
|
|
|
{
|
|
|
|
return _h;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline void
|
|
|
|
half::setBits (unsigned short bits)
|
|
|
|
{
|
|
|
|
_h = bits;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|