|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
|
|
|
|
// Copyright (C) 2014, Advanced Micro Devices, Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#ifndef __OPENCV_FAST_NLMEANS_DENOISING_OPENCL_HPP__
|
|
|
|
#define __OPENCV_FAST_NLMEANS_DENOISING_OPENCL_HPP__
|
|
|
|
|
|
|
|
#include "opencl_kernels_photo.hpp"
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
|
|
|
|
namespace cv {
|
|
|
|
|
|
|
|
enum
|
|
|
|
{
|
|
|
|
BLOCK_ROWS = 32,
|
|
|
|
BLOCK_COLS = 32,
|
|
|
|
CTA_SIZE_INTEL = 64,
|
|
|
|
CTA_SIZE_DEFAULT = 256
|
|
|
|
};
|
|
|
|
|
|
|
|
static int divUp(int a, int b)
|
|
|
|
{
|
|
|
|
return (a + b - 1) / b;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename FT>
|
|
|
|
static bool ocl_calcAlmostDist2Weight(UMat & almostDist2Weight, int searchWindowSize, int templateWindowSize, FT h, int cn,
|
|
|
|
int & almostTemplateWindowSizeSqBinShift, bool abs)
|
|
|
|
{
|
|
|
|
const int maxEstimateSumValue = searchWindowSize * searchWindowSize * 255;
|
|
|
|
int fixedPointMult = std::numeric_limits<int>::max() / maxEstimateSumValue;
|
|
|
|
int depth = DataType<FT>::depth;
|
|
|
|
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
|
|
|
|
|
|
|
|
if (depth == CV_64F && !doubleSupport)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// precalc weight for every possible l2 dist between blocks
|
|
|
|
// additional optimization of precalced weights to replace division(averaging) by binary shift
|
|
|
|
CV_Assert(templateWindowSize <= 46340); // sqrt(INT_MAX)
|
|
|
|
int templateWindowSizeSq = templateWindowSize * templateWindowSize;
|
|
|
|
almostTemplateWindowSizeSqBinShift = getNearestPowerOf2(templateWindowSizeSq);
|
|
|
|
FT almostDist2ActualDistMultiplier = (FT)(1 << almostTemplateWindowSizeSqBinShift) / templateWindowSizeSq;
|
|
|
|
|
|
|
|
const FT WEIGHT_THRESHOLD = 1e-3f;
|
|
|
|
int maxDist = abs ? 255 * cn : 255 * 255 * cn;
|
|
|
|
int almostMaxDist = (int)(maxDist / almostDist2ActualDistMultiplier + 1);
|
|
|
|
FT den = 1.0f / (h * h * cn);
|
|
|
|
|
|
|
|
almostDist2Weight.create(1, almostMaxDist, CV_32SC1);
|
|
|
|
|
|
|
|
ocl::Kernel k("calcAlmostDist2Weight", ocl::photo::nlmeans_oclsrc,
|
|
|
|
format("-D OP_CALC_WEIGHTS -D FT=%s%s%s", ocl::typeToStr(depth),
|
|
|
|
doubleSupport ? " -D DOUBLE_SUPPORT" : "", abs ? " -D ABS" : ""));
|
|
|
|
if (k.empty())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
k.args(ocl::KernelArg::PtrWriteOnly(almostDist2Weight), almostMaxDist,
|
|
|
|
almostDist2ActualDistMultiplier, fixedPointMult, den, WEIGHT_THRESHOLD);
|
|
|
|
|
|
|
|
size_t globalsize[1] = { almostMaxDist };
|
|
|
|
return k.run(1, globalsize, NULL, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool ocl_fastNlMeansDenoising(InputArray _src, OutputArray _dst, float h,
|
|
|
|
int templateWindowSize, int searchWindowSize, bool abs)
|
|
|
|
{
|
|
|
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
|
|
|
int ctaSize = ocl::Device::getDefault().isIntel() ? CTA_SIZE_INTEL : CTA_SIZE_DEFAULT;
|
|
|
|
Size size = _src.size();
|
|
|
|
|
|
|
|
if ( type != CV_8UC1 && type != CV_8UC2 && type != CV_8UC3 )
|
|
|
|
return false;
|
|
|
|
|
|
|
|
int templateWindowHalfWize = templateWindowSize / 2;
|
|
|
|
int searchWindowHalfSize = searchWindowSize / 2;
|
|
|
|
templateWindowSize = templateWindowHalfWize * 2 + 1;
|
|
|
|
searchWindowSize = searchWindowHalfSize * 2 + 1;
|
|
|
|
int nblocksx = divUp(size.width, BLOCK_COLS), nblocksy = divUp(size.height, BLOCK_ROWS);
|
|
|
|
int almostTemplateWindowSizeSqBinShift = -1;
|
|
|
|
|
|
|
|
char cvt[2][40];
|
|
|
|
String opts = format("-D OP_CALC_FASTNLMEANS -D TEMPLATE_SIZE=%d -D SEARCH_SIZE=%d"
|
|
|
|
" -D sample_t=%s -D pixel_t=%s -D int_t=%s"
|
|
|
|
" -D BLOCK_COLS=%d -D BLOCK_ROWS=%d"
|
|
|
|
" -D CTA_SIZE=%d -D TEMPLATE_SIZE2=%d -D SEARCH_SIZE2=%d"
|
|
|
|
" -D convert_int_t=%s -D cn=%d -D convert_pixel_t=%s%s",
|
|
|
|
templateWindowSize, searchWindowSize,
|
|
|
|
ocl::typeToStr(depth), ocl::typeToStr(type), ocl::typeToStr(CV_32SC(cn)),
|
|
|
|
BLOCK_COLS, BLOCK_ROWS,
|
|
|
|
ctaSize, templateWindowHalfWize, searchWindowHalfSize,
|
|
|
|
ocl::convertTypeStr(CV_8U, CV_32S, cn, cvt[0]), type == CV_8UC3 ? 4 : cn,
|
|
|
|
ocl::convertTypeStr(CV_32S, CV_8U, cn, cvt[1]), abs ? " -D ABS" : "");
|
|
|
|
|
|
|
|
ocl::Kernel k("fastNlMeansDenoising", ocl::photo::nlmeans_oclsrc, opts);
|
|
|
|
if (k.empty())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
UMat almostDist2Weight;
|
|
|
|
if (!ocl_calcAlmostDist2Weight<float>(almostDist2Weight, searchWindowSize, templateWindowSize,
|
|
|
|
h, cn, almostTemplateWindowSizeSqBinShift, abs))
|
|
|
|
return false;
|
|
|
|
CV_Assert(almostTemplateWindowSizeSqBinShift >= 0);
|
|
|
|
|
|
|
|
UMat srcex;
|
|
|
|
int borderSize = searchWindowHalfSize + templateWindowHalfWize;
|
|
|
|
if (type == CV_8UC3) {
|
|
|
|
Mat src_rgb = _src.getMat(), src_rgba(size, CV_8UC4);
|
|
|
|
int from_to[] = { 0,0, 1,1, 2,2 };
|
|
|
|
mixChannels(&src_rgb, 1, &src_rgba, 1, from_to, 3);
|
|
|
|
copyMakeBorder(src_rgba, srcex,
|
|
|
|
borderSize, borderSize, borderSize, borderSize, BORDER_DEFAULT);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
copyMakeBorder(_src, srcex, borderSize, borderSize, borderSize, borderSize, BORDER_DEFAULT);
|
|
|
|
|
|
|
|
_dst.create(size, type);
|
|
|
|
UMat dst;
|
|
|
|
if (type == CV_8UC3)
|
|
|
|
dst.create(size, CV_8UC4);
|
|
|
|
else
|
|
|
|
dst = _dst.getUMat();
|
|
|
|
|
|
|
|
int searchWindowSizeSq = searchWindowSize * searchWindowSize;
|
|
|
|
Size upColSumSize(size.width, searchWindowSizeSq * nblocksy);
|
|
|
|
Size colSumSize(nblocksx * templateWindowSize, searchWindowSizeSq * nblocksy);
|
|
|
|
UMat buffer(upColSumSize + colSumSize, CV_32SC(cn));
|
|
|
|
|
|
|
|
srcex = srcex(Rect(Point(borderSize, borderSize), size));
|
|
|
|
k.args(ocl::KernelArg::ReadOnlyNoSize(srcex), ocl::KernelArg::WriteOnly(dst),
|
|
|
|
ocl::KernelArg::PtrReadOnly(almostDist2Weight),
|
|
|
|
ocl::KernelArg::PtrReadOnly(buffer), almostTemplateWindowSizeSqBinShift);
|
|
|
|
|
|
|
|
size_t globalsize[2] = { nblocksx * ctaSize, nblocksy }, localsize[2] = { ctaSize, 1 };
|
|
|
|
if (!k.run(2, globalsize, localsize, false)) return false;
|
|
|
|
|
|
|
|
if (type == CV_8UC3) {
|
|
|
|
Mat dst_rgba = dst.getMat(ACCESS_READ), dst_rgb = _dst.getMat();
|
|
|
|
int from_to[] = { 0,0, 1,1, 2,2 };
|
|
|
|
mixChannels(&dst_rgba, 1, &dst_rgb, 1, from_to, 3);
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool ocl_fastNlMeansDenoisingColored( InputArray _src, OutputArray _dst,
|
|
|
|
float h, float hForColorComponents,
|
|
|
|
int templateWindowSize, int searchWindowSize)
|
|
|
|
{
|
|
|
|
UMat src = _src.getUMat();
|
|
|
|
_dst.create(src.size(), src.type());
|
|
|
|
UMat dst = _dst.getUMat();
|
|
|
|
|
|
|
|
UMat src_lab;
|
|
|
|
cvtColor(src, src_lab, COLOR_LBGR2Lab);
|
|
|
|
|
|
|
|
UMat l(src.size(), CV_8U);
|
|
|
|
UMat ab(src.size(), CV_8UC2);
|
|
|
|
std::vector<UMat> l_ab(2), l_ab_denoised(2);
|
|
|
|
l_ab[0] = l;
|
|
|
|
l_ab[1] = ab;
|
|
|
|
l_ab_denoised[0].create(src.size(), CV_8U);
|
|
|
|
l_ab_denoised[1].create(src.size(), CV_8UC2);
|
|
|
|
|
|
|
|
int from_to[] = { 0,0, 1,1, 2,2 };
|
|
|
|
mixChannels(std::vector<UMat>(1, src_lab), l_ab, from_to, 3);
|
|
|
|
|
|
|
|
fastNlMeansDenoising(l_ab[0], l_ab_denoised[0], h, templateWindowSize, searchWindowSize);
|
|
|
|
fastNlMeansDenoising(l_ab[1], l_ab_denoised[1], hForColorComponents, templateWindowSize, searchWindowSize);
|
|
|
|
|
|
|
|
UMat dst_lab(src.size(), CV_8UC3);
|
|
|
|
mixChannels(l_ab_denoised, std::vector<UMat>(1, dst_lab), from_to, 3);
|
|
|
|
|
|
|
|
cvtColor(dst_lab, dst, COLOR_Lab2LBGR, src.channels());
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
#endif
|