Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

109 lines
3.8 KiB

#!/usr/bin/python
import urllib2
import sys
import cv2.cv as cv
class Sketcher:
def __init__(self, windowname, dests):
self.prev_pt = None
self.windowname = windowname
self.dests = dests
cv.SetMouseCallback(self.windowname, self.on_mouse)
def on_mouse(self, event, x, y, flags, param):
pt = (x, y)
if event == cv.CV_EVENT_LBUTTONUP or not (flags & cv.CV_EVENT_FLAG_LBUTTON):
self.prev_pt = None
elif event == cv.CV_EVENT_LBUTTONDOWN:
self.prev_pt = pt
elif event == cv.CV_EVENT_MOUSEMOVE and (flags & cv.CV_EVENT_FLAG_LBUTTON) :
if self.prev_pt:
for dst in self.dests:
cv.Line(dst, self.prev_pt, pt, cv.ScalarAll(255), 5, 8, 0)
self.prev_pt = pt
cv.ShowImage(self.windowname, img)
if __name__ == "__main__":
if len(sys.argv) > 1:
img0 = cv.LoadImage( sys.argv[1], cv.CV_LOAD_IMAGE_COLOR)
else:
url = 'http://code.opencv.org/projects/opencv/repository/revisions/master/raw/samples/c/fruits.jpg'
filedata = urllib2.urlopen(url).read()
imagefiledata = cv.CreateMatHeader(1, len(filedata), cv.CV_8UC1)
cv.SetData(imagefiledata, filedata, len(filedata))
img0 = cv.DecodeImage(imagefiledata, cv.CV_LOAD_IMAGE_COLOR)
rng = cv.RNG(-1)
print "Hot keys:"
print "\tESC - quit the program"
print "\tr - restore the original image"
print "\tw - run watershed algorithm"
print "\t (before that, roughly outline several markers on the image)"
cv.NamedWindow("image", 1)
cv.NamedWindow("watershed transform", 1)
img = cv.CloneImage(img0)
img_gray = cv.CloneImage(img0)
wshed = cv.CloneImage(img0)
marker_mask = cv.CreateImage(cv.GetSize(img), 8, 1)
markers = cv.CreateImage(cv.GetSize(img), cv.IPL_DEPTH_32S, 1)
cv.CvtColor(img, marker_mask, cv.CV_BGR2GRAY)
cv.CvtColor(marker_mask, img_gray, cv.CV_GRAY2BGR)
cv.Zero(marker_mask)
cv.Zero(wshed)
cv.ShowImage("image", img)
cv.ShowImage("watershed transform", wshed)
sk = Sketcher("image", [img, marker_mask])
while True:
c = cv.WaitKey(0) % 0x100
if c == 27 or c == ord('q'):
break
if c == ord('r'):
cv.Zero(marker_mask)
cv.Copy(img0, img)
cv.ShowImage("image", img)
if c == ord('w'):
storage = cv.CreateMemStorage(0)
#cv.SaveImage("wshed_mask.png", marker_mask)
#marker_mask = cv.LoadImage("wshed_mask.png", 0)
contours = cv.FindContours(marker_mask, storage, cv.CV_RETR_CCOMP, cv.CV_CHAIN_APPROX_SIMPLE)
def contour_iterator(contour):
while contour:
yield contour
contour = contour.h_next()
cv.Zero(markers)
comp_count = 0
for c in contour_iterator(contours):
cv.DrawContours(markers,
c,
cv.ScalarAll(comp_count + 1),
cv.ScalarAll(comp_count + 1),
-1,
-1,
8)
comp_count += 1
cv.Watershed(img0, markers)
cv.Set(wshed, cv.ScalarAll(255))
# paint the watershed image
color_tab = [(cv.RandInt(rng) % 180 + 50, cv.RandInt(rng) % 180 + 50, cv.RandInt(rng) % 180 + 50) for i in range(comp_count)]
for j in range(markers.height):
for i in range(markers.width):
idx = markers[j, i]
if idx != -1:
wshed[j, i] = color_tab[int(idx - 1)]
cv.AddWeighted(wshed, 0.5, img_gray, 0.5, 0, wshed)
cv.ShowImage("watershed transform", wshed)
cv.DestroyAllWindows()