|
|
|
'''
|
|
|
|
Feature homography
|
|
|
|
==================
|
|
|
|
|
|
|
|
Example of using features2d framework for interactive video homography matching.
|
|
|
|
|
|
|
|
Usage
|
|
|
|
-----
|
|
|
|
feature_homography.py [<video source>]
|
|
|
|
|
|
|
|
Keys
|
|
|
|
----
|
|
|
|
SPACE - set reference frame
|
|
|
|
ESC - exit
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import cv2
|
|
|
|
import video
|
|
|
|
from common import draw_str, clock
|
|
|
|
import sys
|
|
|
|
|
|
|
|
|
|
|
|
detector = cv2.FastFeatureDetector(16, True)
|
|
|
|
detector = cv2.GridAdaptedFeatureDetector(detector)
|
|
|
|
extractor = cv2.DescriptorExtractor_create('ORB')
|
|
|
|
|
|
|
|
FLANN_INDEX_KDTREE = 1
|
|
|
|
FLANN_INDEX_LSH = 6
|
|
|
|
flann_params= dict(algorithm = FLANN_INDEX_LSH,
|
|
|
|
table_number = 6, # 12
|
|
|
|
key_size = 12, # 20
|
|
|
|
multi_probe_level = 1) #2
|
|
|
|
matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
|
|
|
|
|
|
|
|
green, red = (0, 255, 0), (0, 0, 255)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
print __doc__
|
|
|
|
|
|
|
|
try: src = sys.argv[1]
|
|
|
|
except: src = 0
|
|
|
|
cap = video.create_capture(src)
|
|
|
|
|
|
|
|
ref_kp = None
|
|
|
|
|
|
|
|
while True:
|
|
|
|
ret, img = cap.read()
|
|
|
|
vis = img.copy()
|
|
|
|
kp = detector.detect(img)
|
|
|
|
kp, desc = extractor.compute(img, kp)
|
|
|
|
|
|
|
|
for p in kp:
|
|
|
|
x, y = np.int32(p.pt)
|
|
|
|
r = int(0.5*p.size)
|
|
|
|
cv2.circle(vis, (x, y), r, (0, 255, 0))
|
|
|
|
draw_str(vis, (20, 20), 'feature_n: %d' % len(kp))
|
|
|
|
|
|
|
|
if ref_kp is not None:
|
|
|
|
raw_matches = matcher.knnMatch(desc, 2)
|
|
|
|
matches = []
|
|
|
|
for m in raw_matches:
|
|
|
|
if len(m) == 2:
|
|
|
|
m1, m2 = m
|
|
|
|
if m1.distance < m2.distance * 0.7:
|
|
|
|
matches.append((m1.trainIdx, m1.queryIdx))
|
|
|
|
match_n = len(matches)
|
|
|
|
|
|
|
|
inlier_n = 0
|
|
|
|
if match_n > 10:
|
|
|
|
p0 = np.float32( [ref_kp[i].pt for i, j in matches] )
|
|
|
|
p1 = np.float32( [kp[j].pt for i, j in matches] )
|
|
|
|
|
|
|
|
H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 10.0)
|
|
|
|
inlier_n = sum(status)
|
|
|
|
if inlier_n > 10:
|
|
|
|
for (x1, y1), (x2, y2), inlier in zip(np.int32(p0), np.int32(p1), status):
|
|
|
|
cv2.line(vis, (x1, y1), (x2, y2), (red, green)[inlier])
|
|
|
|
|
|
|
|
h, w = img.shape[:2]
|
|
|
|
overlay = cv2.warpPerspective(ref_img, H, (w, h))
|
|
|
|
vis = cv2.addWeighted(vis, 0.5, overlay, 0.5, 0.0)
|
|
|
|
draw_str(vis, (20, 40), 'matched: %d ( %d outliers )' % (match_n, match_n-inlier_n))
|
|
|
|
|
|
|
|
cv2.imshow('img', vis)
|
|
|
|
ch = 0xFF & cv2.waitKey(1)
|
|
|
|
if ch == ord(' '):
|
|
|
|
matcher.clear()
|
|
|
|
matcher.add([desc])
|
|
|
|
ref_kp = kp
|
|
|
|
ref_img = img.copy()
|
|
|
|
if ch == 27:
|
|
|
|
break
|
|
|
|
cv2.destroyAllWindows()
|