|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::cuda;
|
|
|
|
|
|
|
|
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
|
|
|
|
|
|
|
|
Ptr<cuda::BackgroundSubtractorMOG2> cv::cuda::createBackgroundSubtractorMOG2(int, double, bool) { throw_no_cuda(); return Ptr<cuda::BackgroundSubtractorMOG2>(); }
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
namespace cv { namespace cuda { namespace device
|
|
|
|
{
|
|
|
|
namespace mog2
|
|
|
|
{
|
|
|
|
void loadConstants(int nmixtures, float Tb, float TB, float Tg, float varInit, float varMin, float varMax, float tau, unsigned char shadowVal);
|
|
|
|
void mog2_gpu(PtrStepSzb frame, int cn, PtrStepSzb fgmask, PtrStepSzb modesUsed, PtrStepSzf weight, PtrStepSzf variance, PtrStepSzb mean, float alphaT, float prune, bool detectShadows, cudaStream_t stream);
|
|
|
|
void getBackgroundImage2_gpu(int cn, PtrStepSzb modesUsed, PtrStepSzf weight, PtrStepSzb mean, PtrStepSzb dst, cudaStream_t stream);
|
|
|
|
}
|
|
|
|
}}}
|
|
|
|
|
|
|
|
namespace
|
|
|
|
{
|
|
|
|
// default parameters of gaussian background detection algorithm
|
|
|
|
const int defaultHistory = 500; // Learning rate; alpha = 1/defaultHistory2
|
|
|
|
const float defaultVarThreshold = 4.0f * 4.0f;
|
|
|
|
const int defaultNMixtures = 5; // maximal number of Gaussians in mixture
|
|
|
|
const float defaultBackgroundRatio = 0.9f; // threshold sum of weights for background test
|
|
|
|
const float defaultVarThresholdGen = 3.0f * 3.0f;
|
|
|
|
const float defaultVarInit = 15.0f; // initial variance for new components
|
|
|
|
const float defaultVarMax = 5.0f * defaultVarInit;
|
|
|
|
const float defaultVarMin = 4.0f;
|
|
|
|
|
|
|
|
// additional parameters
|
|
|
|
const float defaultCT = 0.05f; // complexity reduction prior constant 0 - no reduction of number of components
|
|
|
|
const unsigned char defaultShadowValue = 127; // value to use in the segmentation mask for shadows, set 0 not to do shadow detection
|
|
|
|
const float defaultShadowThreshold = 0.5f; // Tau - shadow threshold, see the paper for explanation
|
|
|
|
|
|
|
|
class MOG2Impl : public cuda::BackgroundSubtractorMOG2
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
MOG2Impl(int history, double varThreshold, bool detectShadows);
|
|
|
|
|
|
|
|
void apply(InputArray image, OutputArray fgmask, double learningRate=-1);
|
|
|
|
void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream);
|
|
|
|
|
|
|
|
void getBackgroundImage(OutputArray backgroundImage) const;
|
|
|
|
void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const;
|
|
|
|
|
|
|
|
int getHistory() const { return history_; }
|
|
|
|
void setHistory(int history) { history_ = history; }
|
|
|
|
|
|
|
|
int getNMixtures() const { return nmixtures_; }
|
|
|
|
void setNMixtures(int nmixtures) { nmixtures_ = nmixtures; }
|
|
|
|
|
|
|
|
double getBackgroundRatio() const { return backgroundRatio_; }
|
|
|
|
void setBackgroundRatio(double ratio) { backgroundRatio_ = (float) ratio; }
|
|
|
|
|
|
|
|
double getVarThreshold() const { return varThreshold_; }
|
|
|
|
void setVarThreshold(double varThreshold) { varThreshold_ = (float) varThreshold; }
|
|
|
|
|
|
|
|
double getVarThresholdGen() const { return varThresholdGen_; }
|
|
|
|
void setVarThresholdGen(double varThresholdGen) { varThresholdGen_ = (float) varThresholdGen; }
|
|
|
|
|
|
|
|
double getVarInit() const { return varInit_; }
|
|
|
|
void setVarInit(double varInit) { varInit_ = (float) varInit; }
|
|
|
|
|
|
|
|
double getVarMin() const { return varMin_; }
|
|
|
|
void setVarMin(double varMin) { varMin_ = (float) varMin; }
|
|
|
|
|
|
|
|
double getVarMax() const { return varMax_; }
|
|
|
|
void setVarMax(double varMax) { varMax_ = (float) varMax; }
|
|
|
|
|
|
|
|
double getComplexityReductionThreshold() const { return ct_; }
|
|
|
|
void setComplexityReductionThreshold(double ct) { ct_ = (float) ct; }
|
|
|
|
|
|
|
|
bool getDetectShadows() const { return detectShadows_; }
|
|
|
|
void setDetectShadows(bool detectShadows) { detectShadows_ = detectShadows; }
|
|
|
|
|
|
|
|
int getShadowValue() const { return shadowValue_; }
|
|
|
|
void setShadowValue(int value) { shadowValue_ = (uchar) value; }
|
|
|
|
|
|
|
|
double getShadowThreshold() const { return shadowThreshold_; }
|
|
|
|
void setShadowThreshold(double threshold) { shadowThreshold_ = (float) threshold; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
void initialize(Size frameSize, int frameType);
|
|
|
|
|
|
|
|
int history_;
|
|
|
|
int nmixtures_;
|
|
|
|
float backgroundRatio_;
|
|
|
|
float varThreshold_;
|
|
|
|
float varThresholdGen_;
|
|
|
|
float varInit_;
|
|
|
|
float varMin_;
|
|
|
|
float varMax_;
|
|
|
|
float ct_;
|
|
|
|
bool detectShadows_;
|
|
|
|
uchar shadowValue_;
|
|
|
|
float shadowThreshold_;
|
|
|
|
|
|
|
|
Size frameSize_;
|
|
|
|
int frameType_;
|
|
|
|
int nframes_;
|
|
|
|
|
|
|
|
GpuMat weight_;
|
|
|
|
GpuMat variance_;
|
|
|
|
GpuMat mean_;
|
|
|
|
|
|
|
|
//keep track of number of modes per pixel
|
|
|
|
GpuMat bgmodelUsedModes_;
|
|
|
|
};
|
|
|
|
|
|
|
|
MOG2Impl::MOG2Impl(int history, double varThreshold, bool detectShadows) :
|
|
|
|
frameSize_(0, 0), frameType_(0), nframes_(0)
|
|
|
|
{
|
|
|
|
history_ = history > 0 ? history : defaultHistory;
|
|
|
|
varThreshold_ = varThreshold > 0 ? (float) varThreshold : defaultVarThreshold;
|
|
|
|
detectShadows_ = detectShadows;
|
|
|
|
|
|
|
|
nmixtures_ = defaultNMixtures;
|
|
|
|
backgroundRatio_ = defaultBackgroundRatio;
|
|
|
|
varInit_ = defaultVarInit;
|
|
|
|
varMax_ = defaultVarMax;
|
|
|
|
varMin_ = defaultVarMin;
|
|
|
|
varThresholdGen_ = defaultVarThresholdGen;
|
|
|
|
ct_ = defaultCT;
|
|
|
|
shadowValue_ = defaultShadowValue;
|
|
|
|
shadowThreshold_ = defaultShadowThreshold;
|
|
|
|
}
|
|
|
|
|
|
|
|
void MOG2Impl::apply(InputArray image, OutputArray fgmask, double learningRate)
|
|
|
|
{
|
|
|
|
apply(image, fgmask, learningRate, Stream::Null());
|
|
|
|
}
|
|
|
|
|
|
|
|
void MOG2Impl::apply(InputArray _frame, OutputArray _fgmask, double learningRate, Stream& stream)
|
|
|
|
{
|
|
|
|
using namespace cv::cuda::device::mog2;
|
|
|
|
|
|
|
|
GpuMat frame = _frame.getGpuMat();
|
|
|
|
|
|
|
|
int ch = frame.channels();
|
|
|
|
int work_ch = ch;
|
|
|
|
|
|
|
|
if (nframes_ == 0 || learningRate >= 1.0 || frame.size() != frameSize_ || work_ch != mean_.channels())
|
|
|
|
initialize(frame.size(), frame.type());
|
|
|
|
|
|
|
|
_fgmask.create(frameSize_, CV_8UC1);
|
|
|
|
GpuMat fgmask = _fgmask.getGpuMat();
|
|
|
|
|
|
|
|
fgmask.setTo(Scalar::all(0), stream);
|
|
|
|
|
|
|
|
++nframes_;
|
|
|
|
learningRate = learningRate >= 0 && nframes_ > 1 ? learningRate : 1.0 / std::min(2 * nframes_, history_);
|
|
|
|
CV_Assert( learningRate >= 0 );
|
|
|
|
|
|
|
|
mog2_gpu(frame, frame.channels(), fgmask, bgmodelUsedModes_, weight_, variance_, mean_,
|
|
|
|
(float) learningRate, static_cast<float>(-learningRate * ct_), detectShadows_, StreamAccessor::getStream(stream));
|
|
|
|
}
|
|
|
|
|
|
|
|
void MOG2Impl::getBackgroundImage(OutputArray backgroundImage) const
|
|
|
|
{
|
|
|
|
getBackgroundImage(backgroundImage, Stream::Null());
|
|
|
|
}
|
|
|
|
|
|
|
|
void MOG2Impl::getBackgroundImage(OutputArray _backgroundImage, Stream& stream) const
|
|
|
|
{
|
|
|
|
using namespace cv::cuda::device::mog2;
|
|
|
|
|
|
|
|
_backgroundImage.create(frameSize_, frameType_);
|
|
|
|
GpuMat backgroundImage = _backgroundImage.getGpuMat();
|
|
|
|
|
|
|
|
getBackgroundImage2_gpu(backgroundImage.channels(), bgmodelUsedModes_, weight_, mean_, backgroundImage, StreamAccessor::getStream(stream));
|
|
|
|
}
|
|
|
|
|
|
|
|
void MOG2Impl::initialize(cv::Size frameSize, int frameType)
|
|
|
|
{
|
|
|
|
using namespace cv::cuda::device::mog2;
|
|
|
|
|
|
|
|
CV_Assert( frameType == CV_8UC1 || frameType == CV_8UC3 || frameType == CV_8UC4 );
|
|
|
|
|
|
|
|
frameSize_ = frameSize;
|
|
|
|
frameType_ = frameType;
|
|
|
|
nframes_ = 0;
|
|
|
|
|
|
|
|
int ch = CV_MAT_CN(frameType);
|
|
|
|
int work_ch = ch;
|
|
|
|
|
|
|
|
// for each gaussian mixture of each pixel bg model we store ...
|
|
|
|
// the mixture weight (w),
|
|
|
|
// the mean (nchannels values) and
|
|
|
|
// the covariance
|
|
|
|
weight_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1);
|
|
|
|
variance_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1);
|
|
|
|
mean_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch));
|
|
|
|
|
|
|
|
//make the array for keeping track of the used modes per pixel - all zeros at start
|
|
|
|
bgmodelUsedModes_.create(frameSize_, CV_8UC1);
|
|
|
|
bgmodelUsedModes_.setTo(Scalar::all(0));
|
|
|
|
|
|
|
|
loadConstants(nmixtures_, varThreshold_, backgroundRatio_, varThresholdGen_, varInit_, varMin_, varMax_, shadowThreshold_, shadowValue_);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Ptr<cuda::BackgroundSubtractorMOG2> cv::cuda::createBackgroundSubtractorMOG2(int history, double varThreshold, bool detectShadows)
|
|
|
|
{
|
|
|
|
return makePtr<MOG2Impl>(history, varThreshold, detectShadows);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|