Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

118 lines
3.9 KiB

/*
* one_way_sample.cpp
* outlet_detection
*
* Created by Victor Eruhimov on 8/5/09.
* Copyright 2009 Argus Corp. All rights reserved.
*
*/
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include <string>
14 years ago
void help()
{
printf("\nThis program demonstrates the one way interest point descriptor found in features2d.hpp\n"
"Correspondences are drawn\n");
printf("Format: \n./one_way_sample <path_to_samples> <image1> <image2>\n");
printf("For example: ./one_way_sample . ../c/scene_l.bmp ../c/scene_r.bmp\n");
14 years ago
}
using namespace cv;
IplImage* DrawCorrespondences(IplImage* img1, const vector<KeyPoint>& features1, IplImage* img2,
const vector<KeyPoint>& features2, const vector<int>& desc_idx);
int main(int argc, char** argv)
{
const char images_list[] = "one_way_train_images.txt";
const CvSize patch_size = cvSize(24, 24);
const int pose_count = 50;
if (argc != 4)
{
help();
return 0;
}
std::string path_name = argv[1];
std::string img1_name = path_name + "/" + std::string(argv[2]);
std::string img2_name = path_name + "/" + std::string(argv[3]);
printf("Reading the images...\n");
IplImage* img1 = cvLoadImage(img1_name.c_str(), CV_LOAD_IMAGE_GRAYSCALE);
IplImage* img2 = cvLoadImage(img2_name.c_str(), CV_LOAD_IMAGE_GRAYSCALE);
// extract keypoints from the first image
SURF surf_extractor(5.0e3);
vector<KeyPoint> keypoints1;
// printf("Extracting keypoints\n");
surf_extractor(img1, Mat(), keypoints1);
printf("Extracted %d keypoints...\n", (int)keypoints1.size());
printf("Training one way descriptors... \n");
// create descriptors
OneWayDescriptorBase descriptors(patch_size, pose_count, OneWayDescriptorBase::GetPCAFilename(), path_name,
images_list);
descriptors.CreateDescriptorsFromImage(img1, keypoints1);
printf("done\n");
// extract keypoints from the second image
vector<KeyPoint> keypoints2;
surf_extractor(img2, Mat(), keypoints2);
printf("Extracted %d keypoints from the second image...\n", (int)keypoints2.size());
printf("Finding nearest neighbors...");
// find NN for each of keypoints2 in keypoints1
vector<int> desc_idx;
desc_idx.resize(keypoints2.size());
for (size_t i = 0; i < keypoints2.size(); i++)
{
int pose_idx = 0;
float distance = 0;
descriptors.FindDescriptor(img2, keypoints2[i].pt, desc_idx[i], pose_idx, distance);
}
printf("done\n");
IplImage* img_corr = DrawCorrespondences(img1, keypoints1, img2, keypoints2, desc_idx);
cvNamedWindow("correspondences", 1);
cvShowImage("correspondences", img_corr);
cvWaitKey(0);
cvReleaseImage(&img1);
cvReleaseImage(&img2);
cvReleaseImage(&img_corr);
}
IplImage* DrawCorrespondences(IplImage* img1, const vector<KeyPoint>& features1, IplImage* img2,
const vector<KeyPoint>& features2, const vector<int>& desc_idx)
{
IplImage* img_corr = cvCreateImage(cvSize(img1->width + img2->width, MAX(img1->height, img2->height)),
IPL_DEPTH_8U, 3);
cvSetImageROI(img_corr, cvRect(0, 0, img1->width, img1->height));
cvCvtColor(img1, img_corr, CV_GRAY2RGB);
cvSetImageROI(img_corr, cvRect(img1->width, 0, img2->width, img2->height));
cvCvtColor(img2, img_corr, CV_GRAY2RGB);
cvResetImageROI(img_corr);
for (size_t i = 0; i < features1.size(); i++)
{
cvCircle(img_corr, features1[i].pt, 3, CV_RGB(255, 0, 0));
}
for (size_t i = 0; i < features2.size(); i++)
{
CvPoint pt = cvPoint((int)features2[i].pt.x + img1->width, (int)features2[i].pt.y);
cvCircle(img_corr, pt, 3, CV_RGB(255, 0, 0));
cvLine(img_corr, features1[desc_idx[i]].pt, pt, CV_RGB(0, 255, 0));
}
return img_corr;
}