Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

139 lines
5.4 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
// Authors:
// * Peter Andreas Entschev, peter@entschev.com
//
//M*/
#include "test_precomp.hpp"
#ifdef HAVE_OPENCL
////////////////////////////////////////////////////////
// ORB
namespace
{
IMPLEMENT_PARAM_CLASS(ORB_FeaturesCount, int)
IMPLEMENT_PARAM_CLASS(ORB_ScaleFactor, float)
IMPLEMENT_PARAM_CLASS(ORB_LevelsCount, int)
IMPLEMENT_PARAM_CLASS(ORB_EdgeThreshold, int)
IMPLEMENT_PARAM_CLASS(ORB_firstLevel, int)
IMPLEMENT_PARAM_CLASS(ORB_WTA_K, int)
IMPLEMENT_PARAM_CLASS(ORB_PatchSize, int)
IMPLEMENT_PARAM_CLASS(ORB_BlurForDescriptor, bool)
}
CV_ENUM(ORB_ScoreType, ORB::HARRIS_SCORE, ORB::FAST_SCORE)
PARAM_TEST_CASE(ORB, ORB_FeaturesCount, ORB_ScaleFactor, ORB_LevelsCount, ORB_EdgeThreshold,
ORB_firstLevel, ORB_WTA_K, ORB_ScoreType, ORB_PatchSize, ORB_BlurForDescriptor)
{
int nFeatures;
float scaleFactor;
int nLevels;
int edgeThreshold;
int firstLevel;
int WTA_K;
int scoreType;
int patchSize;
bool blurForDescriptor;
virtual void SetUp()
{
nFeatures = GET_PARAM(0);
scaleFactor = GET_PARAM(1);
nLevels = GET_PARAM(2);
edgeThreshold = GET_PARAM(3);
firstLevel = GET_PARAM(4);
WTA_K = GET_PARAM(5);
scoreType = GET_PARAM(6);
patchSize = GET_PARAM(7);
blurForDescriptor = GET_PARAM(8);
}
};
OCL_TEST_P(ORB, Accuracy)
{
cv::Mat image = readImage("gpu/perf/aloe.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
cv::Mat mask(image.size(), CV_8UC1, cv::Scalar::all(1));
mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0));
cv::ocl::oclMat ocl_image = cv::ocl::oclMat(image);
cv::ocl::oclMat ocl_mask = cv::ocl::oclMat(mask);
cv::ocl::ORB_OCL orb(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize);
orb.blurForDescriptor = blurForDescriptor;
std::vector<cv::KeyPoint> keypoints;
cv::ocl::oclMat descriptors;
orb(ocl_image, ocl_mask, keypoints, descriptors);
cv::ORB orb_gold(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize);
std::vector<cv::KeyPoint> keypoints_gold;
cv::Mat descriptors_gold;
orb_gold(image, mask, keypoints_gold, descriptors_gold);
cv::BFMatcher matcher(cv::NORM_HAMMING);
std::vector<cv::DMatch> matches;
matcher.match(descriptors_gold, cv::Mat(descriptors), matches);
int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints, matches);
double matchedRatio = static_cast<double>(matchedCount) / keypoints.size();
EXPECT_GT(matchedRatio, 0.35);
}
INSTANTIATE_TEST_CASE_P(OCL_Features2D, ORB, testing::Combine(
testing::Values(ORB_FeaturesCount(1000)),
testing::Values(ORB_ScaleFactor(1.2f)),
testing::Values(ORB_LevelsCount(4), ORB_LevelsCount(8)),
testing::Values(ORB_EdgeThreshold(31)),
testing::Values(ORB_firstLevel(0), ORB_firstLevel(2)),
testing::Values(ORB_WTA_K(2), ORB_WTA_K(3), ORB_WTA_K(4)),
testing::Values(ORB_ScoreType(cv::ORB::HARRIS_SCORE)),
testing::Values(ORB_PatchSize(31), ORB_PatchSize(29)),
testing::Values(ORB_BlurForDescriptor(false), ORB_BlurForDescriptor(true))));
#endif