|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
|
|
|
|
#ifdef HAVE_CUDA
|
|
|
|
|
|
|
|
using namespace cvtest;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// HoughLines
|
|
|
|
|
|
|
|
PARAM_TEST_CASE(HoughLines, cv::gpu::DeviceInfo, cv::Size, UseRoi)
|
|
|
|
{
|
|
|
|
static void generateLines(cv::Mat& img)
|
|
|
|
{
|
|
|
|
img.setTo(cv::Scalar::all(0));
|
|
|
|
|
|
|
|
cv::line(img, cv::Point(20, 0), cv::Point(20, img.rows), cv::Scalar::all(255));
|
|
|
|
cv::line(img, cv::Point(0, 50), cv::Point(img.cols, 50), cv::Scalar::all(255));
|
|
|
|
cv::line(img, cv::Point(0, 0), cv::Point(img.cols, img.rows), cv::Scalar::all(255));
|
|
|
|
cv::line(img, cv::Point(img.cols, 0), cv::Point(0, img.rows), cv::Scalar::all(255));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void drawLines(cv::Mat& dst, const std::vector<cv::Vec2f>& lines)
|
|
|
|
{
|
|
|
|
dst.setTo(cv::Scalar::all(0));
|
|
|
|
|
|
|
|
for (size_t i = 0; i < lines.size(); ++i)
|
|
|
|
{
|
|
|
|
float rho = lines[i][0], theta = lines[i][1];
|
|
|
|
cv::Point pt1, pt2;
|
|
|
|
double a = std::cos(theta), b = std::sin(theta);
|
|
|
|
double x0 = a*rho, y0 = b*rho;
|
|
|
|
pt1.x = cvRound(x0 + 1000*(-b));
|
|
|
|
pt1.y = cvRound(y0 + 1000*(a));
|
|
|
|
pt2.x = cvRound(x0 - 1000*(-b));
|
|
|
|
pt2.y = cvRound(y0 - 1000*(a));
|
|
|
|
cv::line(dst, pt1, pt2, cv::Scalar::all(255));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
GPU_TEST_P(HoughLines, Accuracy)
|
|
|
|
{
|
|
|
|
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
|
|
const cv::Size size = GET_PARAM(1);
|
|
|
|
const bool useRoi = GET_PARAM(2);
|
|
|
|
|
|
|
|
const float rho = 1.0f;
|
|
|
|
const float theta = (float) (1.5 * CV_PI / 180.0);
|
|
|
|
const int threshold = 100;
|
|
|
|
|
|
|
|
cv::Mat src(size, CV_8UC1);
|
|
|
|
generateLines(src);
|
|
|
|
|
|
|
|
cv::Ptr<cv::gpu::HoughLinesDetector> hough = cv::gpu::createHoughLinesDetector(rho, theta, threshold);
|
|
|
|
|
|
|
|
cv::gpu::GpuMat d_lines;
|
|
|
|
hough->detect(loadMat(src, useRoi), d_lines);
|
|
|
|
|
|
|
|
std::vector<cv::Vec2f> lines;
|
|
|
|
hough->downloadResults(d_lines, lines);
|
|
|
|
|
|
|
|
cv::Mat dst(size, CV_8UC1);
|
|
|
|
drawLines(dst, lines);
|
|
|
|
|
|
|
|
ASSERT_MAT_NEAR(src, dst, 0.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HoughLines, testing::Combine(
|
|
|
|
ALL_DEVICES,
|
|
|
|
DIFFERENT_SIZES,
|
|
|
|
WHOLE_SUBMAT));
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// HoughCircles
|
|
|
|
|
|
|
|
PARAM_TEST_CASE(HoughCircles, cv::gpu::DeviceInfo, cv::Size, UseRoi)
|
|
|
|
{
|
|
|
|
static void drawCircles(cv::Mat& dst, const std::vector<cv::Vec3f>& circles, bool fill)
|
|
|
|
{
|
|
|
|
dst.setTo(cv::Scalar::all(0));
|
|
|
|
|
|
|
|
for (size_t i = 0; i < circles.size(); ++i)
|
|
|
|
cv::circle(dst, cv::Point2f(circles[i][0], circles[i][1]), (int)circles[i][2], cv::Scalar::all(255), fill ? -1 : 1);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
GPU_TEST_P(HoughCircles, Accuracy)
|
|
|
|
{
|
|
|
|
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
|
|
const cv::Size size = GET_PARAM(1);
|
|
|
|
const bool useRoi = GET_PARAM(2);
|
|
|
|
|
|
|
|
const float dp = 2.0f;
|
|
|
|
const float minDist = 0.0f;
|
|
|
|
const int minRadius = 10;
|
|
|
|
const int maxRadius = 20;
|
|
|
|
const int cannyThreshold = 100;
|
|
|
|
const int votesThreshold = 20;
|
|
|
|
|
|
|
|
std::vector<cv::Vec3f> circles_gold(4);
|
|
|
|
circles_gold[0] = cv::Vec3i(20, 20, minRadius);
|
|
|
|
circles_gold[1] = cv::Vec3i(90, 87, minRadius + 3);
|
|
|
|
circles_gold[2] = cv::Vec3i(30, 70, minRadius + 8);
|
|
|
|
circles_gold[3] = cv::Vec3i(80, 10, maxRadius);
|
|
|
|
|
|
|
|
cv::Mat src(size, CV_8UC1);
|
|
|
|
drawCircles(src, circles_gold, true);
|
|
|
|
|
|
|
|
cv::Ptr<cv::gpu::HoughCirclesDetector> houghCircles = cv::gpu::createHoughCirclesDetector(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
|
|
|
|
|
|
|
|
cv::gpu::GpuMat d_circles;
|
|
|
|
houghCircles->detect(loadMat(src, useRoi), d_circles);
|
|
|
|
|
|
|
|
std::vector<cv::Vec3f> circles;
|
|
|
|
d_circles.download(circles);
|
|
|
|
|
|
|
|
ASSERT_FALSE(circles.empty());
|
|
|
|
|
|
|
|
for (size_t i = 0; i < circles.size(); ++i)
|
|
|
|
{
|
|
|
|
cv::Vec3f cur = circles[i];
|
|
|
|
|
|
|
|
bool found = false;
|
|
|
|
|
|
|
|
for (size_t j = 0; j < circles_gold.size(); ++j)
|
|
|
|
{
|
|
|
|
cv::Vec3f gold = circles_gold[j];
|
|
|
|
|
|
|
|
if (std::fabs(cur[0] - gold[0]) < 5 && std::fabs(cur[1] - gold[1]) < 5 && std::fabs(cur[2] - gold[2]) < 5)
|
|
|
|
{
|
|
|
|
found = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT_TRUE(found);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HoughCircles, testing::Combine(
|
|
|
|
ALL_DEVICES,
|
|
|
|
DIFFERENT_SIZES,
|
|
|
|
WHOLE_SUBMAT));
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// GeneralizedHough
|
|
|
|
|
|
|
|
PARAM_TEST_CASE(GeneralizedHough, cv::gpu::DeviceInfo, UseRoi)
|
|
|
|
{
|
|
|
|
};
|
|
|
|
|
|
|
|
GPU_TEST_P(GeneralizedHough, Ballard)
|
|
|
|
{
|
|
|
|
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
|
|
const bool useRoi = GET_PARAM(1);
|
|
|
|
|
|
|
|
cv::Mat templ = readImage("../cv/shared/templ.png", cv::IMREAD_GRAYSCALE);
|
|
|
|
ASSERT_FALSE(templ.empty());
|
|
|
|
|
|
|
|
cv::Point templCenter(templ.cols / 2, templ.rows / 2);
|
|
|
|
|
|
|
|
const size_t gold_count = 3;
|
|
|
|
cv::Point pos_gold[gold_count];
|
|
|
|
pos_gold[0] = cv::Point(templCenter.x + 10, templCenter.y + 10);
|
|
|
|
pos_gold[1] = cv::Point(2 * templCenter.x + 40, templCenter.y + 10);
|
|
|
|
pos_gold[2] = cv::Point(2 * templCenter.x + 40, 2 * templCenter.y + 40);
|
|
|
|
|
|
|
|
cv::Mat image(templ.rows * 3, templ.cols * 3, CV_8UC1, cv::Scalar::all(0));
|
|
|
|
for (size_t i = 0; i < gold_count; ++i)
|
|
|
|
{
|
|
|
|
cv::Rect rec(pos_gold[i].x - templCenter.x, pos_gold[i].y - templCenter.y, templ.cols, templ.rows);
|
|
|
|
cv::Mat imageROI = image(rec);
|
|
|
|
templ.copyTo(imageROI);
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Ptr<cv::GeneralizedHoughBallard> alg = cv::gpu::createGeneralizedHoughBallard();
|
|
|
|
alg->setVotesThreshold(200);
|
|
|
|
|
|
|
|
alg->setTemplate(loadMat(templ, useRoi));
|
|
|
|
|
|
|
|
cv::gpu::GpuMat d_pos;
|
|
|
|
alg->detect(loadMat(image, useRoi), d_pos);
|
|
|
|
|
|
|
|
std::vector<cv::Vec4f> pos;
|
|
|
|
d_pos.download(pos);
|
|
|
|
|
|
|
|
ASSERT_EQ(gold_count, pos.size());
|
|
|
|
|
|
|
|
for (size_t i = 0; i < gold_count; ++i)
|
|
|
|
{
|
|
|
|
cv::Point gold = pos_gold[i];
|
|
|
|
|
|
|
|
bool found = false;
|
|
|
|
|
|
|
|
for (size_t j = 0; j < pos.size(); ++j)
|
|
|
|
{
|
|
|
|
cv::Point2f p(pos[j][0], pos[j][1]);
|
|
|
|
|
|
|
|
if (::fabs(p.x - gold.x) < 2 && ::fabs(p.y - gold.y) < 2)
|
|
|
|
{
|
|
|
|
found = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT_TRUE(found);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, GeneralizedHough, testing::Combine(
|
|
|
|
ALL_DEVICES,
|
|
|
|
WHOLE_SUBMAT));
|
|
|
|
|
|
|
|
#endif // HAVE_CUDA
|