|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
//
|
|
|
|
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
|
|
#include <opencv2/core/utils/filesystem.hpp>
|
|
|
|
|
|
|
|
#include <inference_engine.hpp>
|
|
|
|
#include <ie_icnn_network.hpp>
|
|
|
|
#include <ie_extension.h>
|
|
|
|
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
|
|
|
|
static void initDLDTDataPath()
|
|
|
|
{
|
|
|
|
#ifndef WINRT
|
|
|
|
static bool initialized = false;
|
|
|
|
if (!initialized)
|
|
|
|
{
|
|
|
|
const char* dldtTestDataPath = getenv("INTEL_CVSDK_DIR");
|
|
|
|
if (dldtTestDataPath)
|
|
|
|
cvtest::addDataSearchPath(cv::utils::fs::join(dldtTestDataPath, "deployment_tools"));
|
|
|
|
initialized = true;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::dnn;
|
|
|
|
using namespace InferenceEngine;
|
|
|
|
|
|
|
|
static inline void genData(const std::vector<size_t>& dims, Mat& m, Blob::Ptr& dataPtr)
|
|
|
|
{
|
|
|
|
std::vector<int> reversedDims(dims.begin(), dims.end());
|
|
|
|
std::reverse(reversedDims.begin(), reversedDims.end());
|
|
|
|
|
|
|
|
m.create(reversedDims, CV_32F);
|
|
|
|
randu(m, -1, 1);
|
|
|
|
|
|
|
|
dataPtr = make_shared_blob<float>(Precision::FP32, dims, (float*)m.data);
|
|
|
|
}
|
|
|
|
|
|
|
|
void runIE(Target target, const std::string& xmlPath, const std::string& binPath,
|
|
|
|
std::map<std::string, cv::Mat>& inputsMap, std::map<std::string, cv::Mat>& outputsMap)
|
|
|
|
{
|
|
|
|
CNNNetReader reader;
|
|
|
|
reader.ReadNetwork(xmlPath);
|
|
|
|
reader.ReadWeights(binPath);
|
|
|
|
|
|
|
|
CNNNetwork net = reader.getNetwork();
|
|
|
|
|
|
|
|
InferenceEnginePluginPtr enginePtr;
|
|
|
|
InferencePlugin plugin;
|
|
|
|
ExecutableNetwork netExec;
|
|
|
|
InferRequest infRequest;
|
|
|
|
try
|
|
|
|
{
|
|
|
|
auto dispatcher = InferenceEngine::PluginDispatcher({""});
|
|
|
|
switch (target)
|
|
|
|
{
|
|
|
|
case DNN_TARGET_CPU:
|
|
|
|
enginePtr = dispatcher.getSuitablePlugin(TargetDevice::eCPU);
|
|
|
|
break;
|
|
|
|
case DNN_TARGET_OPENCL:
|
|
|
|
case DNN_TARGET_OPENCL_FP16:
|
|
|
|
enginePtr = dispatcher.getSuitablePlugin(TargetDevice::eGPU);
|
|
|
|
break;
|
|
|
|
case DNN_TARGET_MYRIAD:
|
|
|
|
enginePtr = dispatcher.getSuitablePlugin(TargetDevice::eMYRIAD);
|
|
|
|
break;
|
|
|
|
case DNN_TARGET_FPGA:
|
|
|
|
enginePtr = dispatcher.getPluginByDevice("HETERO:FPGA,CPU");
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
CV_Error(Error::StsNotImplemented, "Unknown target");
|
|
|
|
};
|
|
|
|
|
|
|
|
if (target == DNN_TARGET_CPU || target == DNN_TARGET_FPGA)
|
|
|
|
{
|
|
|
|
std::string suffixes[] = {"_avx2", "_sse4", ""};
|
|
|
|
bool haveFeature[] = {
|
|
|
|
checkHardwareSupport(CPU_AVX2),
|
|
|
|
checkHardwareSupport(CPU_SSE4_2),
|
|
|
|
true
|
|
|
|
};
|
|
|
|
for (int i = 0; i < 3; ++i)
|
|
|
|
{
|
|
|
|
if (!haveFeature[i])
|
|
|
|
continue;
|
|
|
|
#ifdef _WIN32
|
|
|
|
std::string libName = "cpu_extension" + suffixes[i] + ".dll";
|
|
|
|
#else
|
|
|
|
std::string libName = "libcpu_extension" + suffixes[i] + ".so";
|
|
|
|
#endif // _WIN32
|
|
|
|
try
|
|
|
|
{
|
|
|
|
IExtensionPtr extension = make_so_pointer<IExtension>(libName);
|
|
|
|
enginePtr->AddExtension(extension, 0);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
catch(...) {}
|
|
|
|
}
|
|
|
|
// Some of networks can work without a library of extra layers.
|
|
|
|
}
|
|
|
|
plugin = InferencePlugin(enginePtr);
|
|
|
|
|
|
|
|
netExec = plugin.LoadNetwork(net, {});
|
|
|
|
infRequest = netExec.CreateInferRequest();
|
|
|
|
}
|
|
|
|
catch (const std::exception& ex)
|
|
|
|
{
|
|
|
|
CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what()));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Fill input blobs.
|
|
|
|
inputsMap.clear();
|
|
|
|
BlobMap inputBlobs;
|
|
|
|
for (auto& it : net.getInputsInfo())
|
|
|
|
{
|
|
|
|
genData(it.second->getDims(), inputsMap[it.first], inputBlobs[it.first]);
|
|
|
|
}
|
|
|
|
infRequest.SetInput(inputBlobs);
|
|
|
|
|
|
|
|
// Fill output blobs.
|
|
|
|
outputsMap.clear();
|
|
|
|
BlobMap outputBlobs;
|
|
|
|
for (auto& it : net.getOutputsInfo())
|
|
|
|
{
|
|
|
|
genData(it.second->dims, outputsMap[it.first], outputBlobs[it.first]);
|
|
|
|
}
|
|
|
|
infRequest.SetOutput(outputBlobs);
|
|
|
|
|
|
|
|
infRequest.Infer();
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<String> getOutputsNames(const Net& net)
|
|
|
|
{
|
|
|
|
std::vector<String> names;
|
|
|
|
if (names.empty())
|
|
|
|
{
|
|
|
|
std::vector<int> outLayers = net.getUnconnectedOutLayers();
|
|
|
|
std::vector<String> layersNames = net.getLayerNames();
|
|
|
|
names.resize(outLayers.size());
|
|
|
|
for (size_t i = 0; i < outLayers.size(); ++i)
|
|
|
|
names[i] = layersNames[outLayers[i] - 1];
|
|
|
|
}
|
|
|
|
return names;
|
|
|
|
}
|
|
|
|
|
|
|
|
void runCV(Target target, const std::string& xmlPath, const std::string& binPath,
|
|
|
|
const std::map<std::string, cv::Mat>& inputsMap,
|
|
|
|
std::map<std::string, cv::Mat>& outputsMap)
|
|
|
|
{
|
|
|
|
Net net = readNet(xmlPath, binPath);
|
|
|
|
for (auto& it : inputsMap)
|
|
|
|
net.setInput(it.second, it.first);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
|
|
|
|
std::vector<String> outNames = getOutputsNames(net);
|
|
|
|
std::vector<Mat> outs;
|
|
|
|
net.forward(outs, outNames);
|
|
|
|
|
|
|
|
outputsMap.clear();
|
|
|
|
EXPECT_EQ(outs.size(), outNames.size());
|
|
|
|
for (int i = 0; i < outs.size(); ++i)
|
|
|
|
{
|
|
|
|
EXPECT_TRUE(outputsMap.insert({outNames[i], outs[i]}).second);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef TestWithParam<tuple<Target, String> > DNNTestOpenVINO;
|
|
|
|
TEST_P(DNNTestOpenVINO, models)
|
|
|
|
{
|
|
|
|
Target target = (dnn::Target)(int)get<0>(GetParam());
|
|
|
|
std::string modelName = get<1>(GetParam());
|
|
|
|
std::string precision = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? "FP16" : "FP32";
|
|
|
|
|
|
|
|
#ifdef INF_ENGINE_RELEASE
|
|
|
|
#if INF_ENGINE_RELEASE <= 2018050000
|
|
|
|
std::string prefix = utils::fs::join("intel_models",
|
|
|
|
utils::fs::join(modelName,
|
|
|
|
utils::fs::join(precision, modelName)));
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
initDLDTDataPath();
|
|
|
|
std::string xmlPath = findDataFile(prefix + ".xml");
|
|
|
|
std::string binPath = findDataFile(prefix + ".bin");
|
|
|
|
|
|
|
|
std::map<std::string, cv::Mat> inputsMap;
|
|
|
|
std::map<std::string, cv::Mat> ieOutputsMap, cvOutputsMap;
|
|
|
|
// Single Myriad device cannot be shared across multiple processes.
|
|
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
|
|
resetMyriadDevice();
|
|
|
|
runIE(target, xmlPath, binPath, inputsMap, ieOutputsMap);
|
|
|
|
runCV(target, xmlPath, binPath, inputsMap, cvOutputsMap);
|
|
|
|
|
|
|
|
EXPECT_EQ(ieOutputsMap.size(), cvOutputsMap.size());
|
|
|
|
for (auto& srcIt : ieOutputsMap)
|
|
|
|
{
|
|
|
|
auto dstIt = cvOutputsMap.find(srcIt.first);
|
|
|
|
CV_Assert(dstIt != cvOutputsMap.end());
|
|
|
|
double normInf = cvtest::norm(srcIt.second, dstIt->second, cv::NORM_INF);
|
|
|
|
EXPECT_EQ(normInf, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/,
|
|
|
|
DNNTestOpenVINO,
|
|
|
|
Combine(testing::ValuesIn(getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE)),
|
|
|
|
testing::Values(
|
|
|
|
"age-gender-recognition-retail-0013",
|
|
|
|
"face-person-detection-retail-0002",
|
|
|
|
"head-pose-estimation-adas-0001",
|
|
|
|
"person-detection-retail-0002",
|
|
|
|
"vehicle-detection-adas-0002"
|
|
|
|
))
|
|
|
|
);
|
|
|
|
|
|
|
|
}}
|
|
|
|
#endif // HAVE_INF_ENGINE
|