|
|
|
|
#include <opencv2/opencv.hpp>
|
|
|
|
|
|
|
|
|
|
#include <string>
|
|
|
|
|
#include <iostream>
|
|
|
|
|
#include <fstream>
|
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
|
|
#include <time.h>
|
|
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Convert training/testing set to be used by OpenCV Machine Learning algorithms.
|
|
|
|
|
* TrainData is a matrix of size (#samples x max(#cols,#rows) per samples), in 32FC1.
|
|
|
|
|
* Transposition of samples are made if needed.
|
|
|
|
|
*/
|
|
|
|
|
void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainData )
|
|
|
|
|
{
|
|
|
|
|
//--Convert data
|
|
|
|
|
const int rows = (int)train_samples.size();
|
|
|
|
|
const int cols = (int)std::max( train_samples[0].cols, train_samples[0].rows );
|
|
|
|
|
cv::Mat tmp(1, cols, CV_32FC1); //< used for transposition if needed
|
|
|
|
|
trainData = cv::Mat(rows, cols, CV_32FC1 );
|
|
|
|
|
auto& itr = train_samples.begin();
|
|
|
|
|
auto& end = train_samples.end();
|
|
|
|
|
for( int i = 0 ; itr != end ; ++itr, ++i )
|
|
|
|
|
{
|
|
|
|
|
CV_Assert( itr->cols == 1 ||
|
|
|
|
|
itr->rows == 1 );
|
|
|
|
|
if( itr->cols == 1 )
|
|
|
|
|
{
|
|
|
|
|
transpose( *(itr), tmp );
|
|
|
|
|
tmp.copyTo( trainData.row( i ) );
|
|
|
|
|
}
|
|
|
|
|
else if( itr->rows == 1 )
|
|
|
|
|
{
|
|
|
|
|
itr->copyTo( trainData.row( i ) );
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void load_images( const string & prefix, const string & filename, vector< Mat > & img_lst )
|
|
|
|
|
{
|
|
|
|
|
string line;
|
|
|
|
|
ifstream file;
|
|
|
|
|
|
|
|
|
|
file.open( (prefix+filename).c_str() );
|
|
|
|
|
if( !file.is_open() )
|
|
|
|
|
{
|
|
|
|
|
cerr << "Unable to open the list of images from " << filename << " filename." << endl;
|
|
|
|
|
exit( -1 );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
while( 1 )
|
|
|
|
|
{
|
|
|
|
|
getline( file, line );
|
|
|
|
|
if( line == "" ) // no more file to read
|
|
|
|
|
break;
|
|
|
|
|
Mat img = imread( (prefix+line).c_str() ); // load the image
|
|
|
|
|
if( !img.data ) // invalid image, just skip it.
|
|
|
|
|
continue;
|
|
|
|
|
#ifdef _DEBUG
|
|
|
|
|
imshow( "image", img );
|
|
|
|
|
waitKey( 10 );
|
|
|
|
|
#endif
|
|
|
|
|
img_lst.push_back( img.clone() );
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size )
|
|
|
|
|
{
|
|
|
|
|
Rect box;
|
|
|
|
|
box.width = size.width;
|
|
|
|
|
box.height = size.height;
|
|
|
|
|
|
|
|
|
|
const int size_x = box.width;
|
|
|
|
|
const int size_y = box.height;
|
|
|
|
|
|
|
|
|
|
srand( time( NULL ) );
|
|
|
|
|
|
|
|
|
|
auto& img = full_neg_lst.begin();
|
|
|
|
|
auto& end = full_neg_lst.end();
|
|
|
|
|
for( ; img != end ; ++img )
|
|
|
|
|
{
|
|
|
|
|
box.x = rand() % (img->cols - size_x);
|
|
|
|
|
box.y = rand() % (img->rows - size_y);
|
|
|
|
|
Mat roi = (*img)(box);
|
|
|
|
|
neg_lst.push_back( roi.clone() );
|
|
|
|
|
#ifdef _DEBUG
|
|
|
|
|
imshow( "img", roi.clone() );
|
|
|
|
|
waitKey( 10 );
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues, const Size & size )
|
|
|
|
|
{
|
|
|
|
|
const int DIMX = size.width;
|
|
|
|
|
const int DIMY = size.height;
|
|
|
|
|
float zoomFac = 3;
|
|
|
|
|
Mat visu;
|
|
|
|
|
resize(color_origImg, visu, Size(color_origImg.cols*zoomFac, color_origImg.rows*zoomFac));
|
|
|
|
|
|
|
|
|
|
int blockSize = 16;
|
|
|
|
|
int cellSize = 8;
|
|
|
|
|
int gradientBinSize = 9;
|
|
|
|
|
float radRangeForOneBin = CV_PI/(float)gradientBinSize; // dividing 180<EFBFBD> into 9 bins, how large (in rad) is one bin?
|
|
|
|
|
|
|
|
|
|
// prepare data structure: 9 orientation / gradient strenghts for each cell
|
|
|
|
|
int cells_in_x_dir = DIMX / cellSize;
|
|
|
|
|
int cells_in_y_dir = DIMY / cellSize;
|
|
|
|
|
int totalnrofcells = cells_in_x_dir * cells_in_y_dir;
|
|
|
|
|
float*** gradientStrengths = new float**[cells_in_y_dir];
|
|
|
|
|
int** cellUpdateCounter = new int*[cells_in_y_dir];
|
|
|
|
|
for (int y=0; y<cells_in_y_dir; y++)
|
|
|
|
|
{
|
|
|
|
|
gradientStrengths[y] = new float*[cells_in_x_dir];
|
|
|
|
|
cellUpdateCounter[y] = new int[cells_in_x_dir];
|
|
|
|
|
for (int x=0; x<cells_in_x_dir; x++)
|
|
|
|
|
{
|
|
|
|
|
gradientStrengths[y][x] = new float[gradientBinSize];
|
|
|
|
|
cellUpdateCounter[y][x] = 0;
|
|
|
|
|
|
|
|
|
|
for (int bin=0; bin<gradientBinSize; bin++)
|
|
|
|
|
gradientStrengths[y][x][bin] = 0.0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// nr of blocks = nr of cells - 1
|
|
|
|
|
// since there is a new block on each cell (overlapping blocks!) but the last one
|
|
|
|
|
int blocks_in_x_dir = cells_in_x_dir - 1;
|
|
|
|
|
int blocks_in_y_dir = cells_in_y_dir - 1;
|
|
|
|
|
|
|
|
|
|
// compute gradient strengths per cell
|
|
|
|
|
int descriptorDataIdx = 0;
|
|
|
|
|
int cellx = 0;
|
|
|
|
|
int celly = 0;
|
|
|
|
|
|
|
|
|
|
for (int blockx=0; blockx<blocks_in_x_dir; blockx++)
|
|
|
|
|
{
|
|
|
|
|
for (int blocky=0; blocky<blocks_in_y_dir; blocky++)
|
|
|
|
|
{
|
|
|
|
|
// 4 cells per block ...
|
|
|
|
|
for (int cellNr=0; cellNr<4; cellNr++)
|
|
|
|
|
{
|
|
|
|
|
// compute corresponding cell nr
|
|
|
|
|
int cellx = blockx;
|
|
|
|
|
int celly = blocky;
|
|
|
|
|
if (cellNr==1) celly++;
|
|
|
|
|
if (cellNr==2) cellx++;
|
|
|
|
|
if (cellNr==3)
|
|
|
|
|
{
|
|
|
|
|
cellx++;
|
|
|
|
|
celly++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (int bin=0; bin<gradientBinSize; bin++)
|
|
|
|
|
{
|
|
|
|
|
float gradientStrength = descriptorValues[ descriptorDataIdx ];
|
|
|
|
|
descriptorDataIdx++;
|
|
|
|
|
|
|
|
|
|
gradientStrengths[celly][cellx][bin] += gradientStrength;
|
|
|
|
|
|
|
|
|
|
} // for (all bins)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// note: overlapping blocks lead to multiple updates of this sum!
|
|
|
|
|
// we therefore keep track how often a cell was updated,
|
|
|
|
|
// to compute average gradient strengths
|
|
|
|
|
cellUpdateCounter[celly][cellx]++;
|
|
|
|
|
|
|
|
|
|
} // for (all cells)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} // for (all block x pos)
|
|
|
|
|
} // for (all block y pos)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// compute average gradient strengths
|
|
|
|
|
for (int celly=0; celly<cells_in_y_dir; celly++)
|
|
|
|
|
{
|
|
|
|
|
for (int cellx=0; cellx<cells_in_x_dir; cellx++)
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
float NrUpdatesForThisCell = (float)cellUpdateCounter[celly][cellx];
|
|
|
|
|
|
|
|
|
|
// compute average gradient strenghts for each gradient bin direction
|
|
|
|
|
for (int bin=0; bin<gradientBinSize; bin++)
|
|
|
|
|
{
|
|
|
|
|
gradientStrengths[celly][cellx][bin] /= NrUpdatesForThisCell;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// draw cells
|
|
|
|
|
for (int celly=0; celly<cells_in_y_dir; celly++)
|
|
|
|
|
{
|
|
|
|
|
for (int cellx=0; cellx<cells_in_x_dir; cellx++)
|
|
|
|
|
{
|
|
|
|
|
int drawX = cellx * cellSize;
|
|
|
|
|
int drawY = celly * cellSize;
|
|
|
|
|
|
|
|
|
|
int mx = drawX + cellSize/2;
|
|
|
|
|
int my = drawY + cellSize/2;
|
|
|
|
|
|
|
|
|
|
rectangle(visu, Point(drawX*zoomFac,drawY*zoomFac), Point((drawX+cellSize)*zoomFac,(drawY+cellSize)*zoomFac), CV_RGB(100,100,100), 1);
|
|
|
|
|
|
|
|
|
|
// draw in each cell all 9 gradient strengths
|
|
|
|
|
for (int bin=0; bin<gradientBinSize; bin++)
|
|
|
|
|
{
|
|
|
|
|
float currentGradStrength = gradientStrengths[celly][cellx][bin];
|
|
|
|
|
|
|
|
|
|
// no line to draw?
|
|
|
|
|
if (currentGradStrength==0)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
float currRad = bin * radRangeForOneBin + radRangeForOneBin/2;
|
|
|
|
|
|
|
|
|
|
float dirVecX = cos( currRad );
|
|
|
|
|
float dirVecY = sin( currRad );
|
|
|
|
|
float maxVecLen = cellSize/2;
|
|
|
|
|
float scale = 2.5; // just a visualization scale, to see the lines better
|
|
|
|
|
|
|
|
|
|
// compute line coordinates
|
|
|
|
|
float x1 = mx - dirVecX * currentGradStrength * maxVecLen * scale;
|
|
|
|
|
float y1 = my - dirVecY * currentGradStrength * maxVecLen * scale;
|
|
|
|
|
float x2 = mx + dirVecX * currentGradStrength * maxVecLen * scale;
|
|
|
|
|
float y2 = my + dirVecY * currentGradStrength * maxVecLen * scale;
|
|
|
|
|
|
|
|
|
|
// draw gradient visualization
|
|
|
|
|
line(visu, Point(x1*zoomFac,y1*zoomFac), Point(x2*zoomFac,y2*zoomFac), CV_RGB(0,255,0), 1);
|
|
|
|
|
|
|
|
|
|
} // for (all bins)
|
|
|
|
|
|
|
|
|
|
} // for (cellx)
|
|
|
|
|
} // for (celly)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// don't forget to free memory allocated by helper data structures!
|
|
|
|
|
for (int y=0; y<cells_in_y_dir; y++)
|
|
|
|
|
{
|
|
|
|
|
for (int x=0; x<cells_in_x_dir; x++)
|
|
|
|
|
{
|
|
|
|
|
delete[] gradientStrengths[y][x];
|
|
|
|
|
}
|
|
|
|
|
delete[] gradientStrengths[y];
|
|
|
|
|
delete[] cellUpdateCounter[y];
|
|
|
|
|
}
|
|
|
|
|
delete[] gradientStrengths;
|
|
|
|
|
delete[] cellUpdateCounter;
|
|
|
|
|
|
|
|
|
|
return visu;
|
|
|
|
|
|
|
|
|
|
} // get_hogdescriptor_visu
|
|
|
|
|
|
|
|
|
|
void compute_hog( const vector< Mat > & img_lst, vector< Mat > & gradient_lst, const Size & size )
|
|
|
|
|
{
|
|
|
|
|
HOGDescriptor hog;
|
|
|
|
|
hog.winSize = size;
|
|
|
|
|
Mat gray;
|
|
|
|
|
vector< Point > location;
|
|
|
|
|
vector< float > descriptors;
|
|
|
|
|
|
|
|
|
|
auto& img = img_lst.begin();
|
|
|
|
|
auto& end = img_lst.end();
|
|
|
|
|
for( ; img != end ; ++img )
|
|
|
|
|
{
|
|
|
|
|
cvtColor( *img, gray, COLOR_BGR2GRAY );
|
|
|
|
|
hog.compute( gray, descriptors, Size( 8, 8 ), Size( 0, 0 ), location );
|
|
|
|
|
gradient_lst.push_back( Mat( descriptors ).clone() );
|
|
|
|
|
#ifdef _DEBUG
|
|
|
|
|
imshow( "gradient", get_hogdescriptor_visu( img->clone(), descriptors, size ) );
|
|
|
|
|
waitKey( 10 );
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void train_svm( const vector< Mat > & gradient_lst, const vector< int > & labels )
|
|
|
|
|
{
|
|
|
|
|
SVM svm;
|
|
|
|
|
|
|
|
|
|
/* Default values to train SVM */
|
|
|
|
|
SVMParams params;
|
|
|
|
|
params.coef0 = 0.0;
|
|
|
|
|
params.degree = 3;
|
|
|
|
|
params.term_crit.epsilon = 1e-3;
|
|
|
|
|
params.gamma = 0;
|
|
|
|
|
params.kernel_type = SVM::LINEAR;
|
|
|
|
|
params.nu = 0.5;
|
|
|
|
|
params.p = 0.1; // for EPSILON_SVR, epsilon in loss function?
|
|
|
|
|
params.C = 0.01; // From paper, soft classifier
|
|
|
|
|
params.svm_type = SVM::EPS_SVR; // C_SVC; // EPSILON_SVR; // may be also NU_SVR; // do regression task
|
|
|
|
|
|
|
|
|
|
Mat train_data;
|
|
|
|
|
convert_to_ml( gradient_lst, train_data );
|
|
|
|
|
|
|
|
|
|
clog << "Start training...";
|
|
|
|
|
svm.train( train_data, Mat( labels ), Mat(), Mat(), params );
|
|
|
|
|
clog << "...[done]" << endl;
|
|
|
|
|
|
|
|
|
|
svm.save( "my_people_detector.yml" );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void draw_locations( Mat & img, const vector< Rect > & locations, const Scalar & color )
|
|
|
|
|
{
|
|
|
|
|
if( !locations.empty() )
|
|
|
|
|
{
|
|
|
|
|
auto& loc = locations.begin();
|
|
|
|
|
auto& end = locations.end();
|
|
|
|
|
for( ; loc != end ; ++loc )
|
|
|
|
|
{
|
|
|
|
|
rectangle( img, *loc, color, 2 );
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void test_it( const Size & size )
|
|
|
|
|
{
|
|
|
|
|
char key = 27;
|
|
|
|
|
Scalar reference( 0, 255, 0 );
|
|
|
|
|
Scalar trained( 0, 0, 255 );
|
|
|
|
|
Mat img, draw;
|
|
|
|
|
SVM svm;
|
|
|
|
|
HOGDescriptor hog;
|
|
|
|
|
HOGDescriptor my_hog;
|
|
|
|
|
my_hog.winSize = size;
|
|
|
|
|
VideoCapture video;
|
|
|
|
|
vector< Rect > locations;
|
|
|
|
|
|
|
|
|
|
// Load the trained SVM.
|
|
|
|
|
svm.load( "my_people_detector.yml" );
|
|
|
|
|
// Set the trained svm to my_hog
|
|
|
|
|
vector< float > hog_detector;
|
|
|
|
|
svm.get_svm_detector( hog_detector );
|
|
|
|
|
my_hog.setSVMDetector( hog_detector );
|
|
|
|
|
// Set the people detector.
|
|
|
|
|
hog.setSVMDetector( hog.getDefaultPeopleDetector() );
|
|
|
|
|
// Open the camera.
|
|
|
|
|
video.open(0);
|
|
|
|
|
if( !video.isOpened() )
|
|
|
|
|
{
|
|
|
|
|
cerr << "Unable to open the device 0" << endl;
|
|
|
|
|
exit( -1 );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
while( true )
|
|
|
|
|
{
|
|
|
|
|
video >> img;
|
|
|
|
|
if( !img.data )
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
draw = img.clone();
|
|
|
|
|
|
|
|
|
|
locations.clear();
|
|
|
|
|
hog.detectMultiScale( img, locations );
|
|
|
|
|
draw_locations( draw, locations, reference );
|
|
|
|
|
|
|
|
|
|
locations.clear();
|
|
|
|
|
my_hog.detectMultiScale( img, locations );
|
|
|
|
|
draw_locations( draw, locations, trained );
|
|
|
|
|
|
|
|
|
|
imshow( "Video", draw );
|
|
|
|
|
key = waitKey( 10 );
|
|
|
|
|
if( 27 == key )
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int main( int argc, char** argv )
|
|
|
|
|
{
|
|
|
|
|
if( argc != 4 )
|
|
|
|
|
{
|
|
|
|
|
cout << "Wrong number of parameters." << endl
|
|
|
|
|
<< "Usage: " << argv[0] << " pos_dir pos.lst neg_dir neg.lst" << endl
|
|
|
|
|
<< "example: " << argv[0] << " /INRIA_dataset/ Train/pos.lst /INRIA_dataset/ Train/neg.lst" << endl;
|
|
|
|
|
exit( -1 );
|
|
|
|
|
}
|
|
|
|
|
vector< Mat > pos_lst;
|
|
|
|
|
vector< Mat > full_neg_lst;
|
|
|
|
|
vector< Mat > neg_lst;
|
|
|
|
|
vector< Mat > gradient_lst;
|
|
|
|
|
vector< int > labels;
|
|
|
|
|
|
|
|
|
|
load_images( argv[1], argv[2], pos_lst );
|
|
|
|
|
labels.assign( pos_lst.size(), +1 );
|
|
|
|
|
const int old = labels.size();
|
|
|
|
|
load_images( argv[3], argv[4], full_neg_lst );
|
|
|
|
|
sample_neg( full_neg_lst, neg_lst, Size( 96,160 ) );
|
|
|
|
|
labels.insert( labels.end(), neg_lst.size(), -1 );
|
|
|
|
|
CV_Assert( old < labels.size() );
|
|
|
|
|
|
|
|
|
|
compute_hog( pos_lst, gradient_lst, Size( 96, 160 ) );
|
|
|
|
|
compute_hog( neg_lst, gradient_lst, Size( 96, 160 ) );
|
|
|
|
|
|
|
|
|
|
train_svm( gradient_lst, labels );
|
|
|
|
|
|
|
|
|
|
test_it( Size( 96, 160 ) ); // change with your parameters
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|