|
|
|
/* sbdsdc.f -- translated by f2c (version 20061008).
|
|
|
|
You must link the resulting object file with libf2c:
|
|
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
|
|
-- in that order, at the end of the command line, as in
|
|
|
|
cc *.o -lf2c -lm
|
|
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
|
|
|
|
static integer c__9 = 9;
|
|
|
|
static integer c__0 = 0;
|
|
|
|
static real c_b15 = 1.f;
|
|
|
|
static integer c__1 = 1;
|
|
|
|
static real c_b29 = 0.f;
|
|
|
|
|
|
|
|
/* Subroutine */ int sbdsdc_(char *uplo, char *compq, integer *n, real *d__,
|
|
|
|
real *e, real *u, integer *ldu, real *vt, integer *ldvt, real *q,
|
|
|
|
integer *iq, real *work, integer *iwork, integer *info)
|
|
|
|
{
|
|
|
|
/* System generated locals */
|
|
|
|
integer u_dim1, u_offset, vt_dim1, vt_offset, i__1, i__2;
|
|
|
|
real r__1;
|
|
|
|
|
|
|
|
/* Builtin functions */
|
|
|
|
double r_sign(real *, real *), log(doublereal);
|
|
|
|
|
|
|
|
/* Local variables */
|
|
|
|
integer i__, j, k;
|
|
|
|
real p, r__;
|
|
|
|
integer z__, ic, ii, kk;
|
|
|
|
real cs;
|
|
|
|
integer is, iu;
|
|
|
|
real sn;
|
|
|
|
integer nm1;
|
|
|
|
real eps;
|
|
|
|
integer ivt, difl, difr, ierr, perm, mlvl, sqre;
|
|
|
|
extern logical lsame_(char *, char *);
|
|
|
|
integer poles;
|
|
|
|
extern /* Subroutine */ int slasr_(char *, char *, char *, integer *,
|
|
|
|
integer *, real *, real *, real *, integer *);
|
|
|
|
integer iuplo, nsize, start;
|
|
|
|
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
|
|
|
|
integer *), sswap_(integer *, real *, integer *, real *, integer *
|
|
|
|
), slasd0_(integer *, integer *, real *, real *, real *, integer *
|
|
|
|
, real *, integer *, integer *, integer *, real *, integer *);
|
|
|
|
extern doublereal slamch_(char *);
|
|
|
|
extern /* Subroutine */ int slasda_(integer *, integer *, integer *,
|
|
|
|
integer *, real *, real *, real *, integer *, real *, integer *,
|
|
|
|
real *, real *, real *, real *, integer *, integer *, integer *,
|
|
|
|
integer *, real *, real *, real *, real *, integer *, integer *),
|
|
|
|
xerbla_(char *, integer *);
|
|
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
|
|
integer *, integer *);
|
|
|
|
extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
|
|
|
|
real *, integer *, integer *, real *, integer *, integer *);
|
|
|
|
integer givcol;
|
|
|
|
extern /* Subroutine */ int slasdq_(char *, integer *, integer *, integer
|
|
|
|
*, integer *, integer *, real *, real *, real *, integer *, real *
|
|
|
|
, integer *, real *, integer *, real *, integer *);
|
|
|
|
integer icompq;
|
|
|
|
extern /* Subroutine */ int slaset_(char *, integer *, integer *, real *,
|
|
|
|
real *, real *, integer *), slartg_(real *, real *, real *
|
|
|
|
, real *, real *);
|
|
|
|
real orgnrm;
|
|
|
|
integer givnum;
|
|
|
|
extern doublereal slanst_(char *, integer *, real *, real *);
|
|
|
|
integer givptr, qstart, smlsiz, wstart, smlszp;
|
|
|
|
|
|
|
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */
|
|
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
|
|
/* November 2006 */
|
|
|
|
|
|
|
|
/* .. Scalar Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Array Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
|
|
|
|
/* Purpose */
|
|
|
|
/* ======= */
|
|
|
|
|
|
|
|
/* SBDSDC computes the singular value decomposition (SVD) of a real */
|
|
|
|
/* N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT, */
|
|
|
|
/* using a divide and conquer method, where S is a diagonal matrix */
|
|
|
|
/* with non-negative diagonal elements (the singular values of B), and */
|
|
|
|
/* U and VT are orthogonal matrices of left and right singular vectors, */
|
|
|
|
/* respectively. SBDSDC can be used to compute all singular values, */
|
|
|
|
/* and optionally, singular vectors or singular vectors in compact form. */
|
|
|
|
|
|
|
|
/* This code makes very mild assumptions about floating point */
|
|
|
|
/* arithmetic. It will work on machines with a guard digit in */
|
|
|
|
/* add/subtract, or on those binary machines without guard digits */
|
|
|
|
/* which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
|
|
|
|
/* It could conceivably fail on hexadecimal or decimal machines */
|
|
|
|
/* without guard digits, but we know of none. See SLASD3 for details. */
|
|
|
|
|
|
|
|
/* The code currently calls SLASDQ if singular values only are desired. */
|
|
|
|
/* However, it can be slightly modified to compute singular values */
|
|
|
|
/* using the divide and conquer method. */
|
|
|
|
|
|
|
|
/* Arguments */
|
|
|
|
/* ========= */
|
|
|
|
|
|
|
|
/* UPLO (input) CHARACTER*1 */
|
|
|
|
/* = 'U': B is upper bidiagonal. */
|
|
|
|
/* = 'L': B is lower bidiagonal. */
|
|
|
|
|
|
|
|
/* COMPQ (input) CHARACTER*1 */
|
|
|
|
/* Specifies whether singular vectors are to be computed */
|
|
|
|
/* as follows: */
|
|
|
|
/* = 'N': Compute singular values only; */
|
|
|
|
/* = 'P': Compute singular values and compute singular */
|
|
|
|
/* vectors in compact form; */
|
|
|
|
/* = 'I': Compute singular values and singular vectors. */
|
|
|
|
|
|
|
|
/* N (input) INTEGER */
|
|
|
|
/* The order of the matrix B. N >= 0. */
|
|
|
|
|
|
|
|
/* D (input/output) REAL array, dimension (N) */
|
|
|
|
/* On entry, the n diagonal elements of the bidiagonal matrix B. */
|
|
|
|
/* On exit, if INFO=0, the singular values of B. */
|
|
|
|
|
|
|
|
/* E (input/output) REAL array, dimension (N-1) */
|
|
|
|
/* On entry, the elements of E contain the offdiagonal */
|
|
|
|
/* elements of the bidiagonal matrix whose SVD is desired. */
|
|
|
|
/* On exit, E has been destroyed. */
|
|
|
|
|
|
|
|
/* U (output) REAL array, dimension (LDU,N) */
|
|
|
|
/* If COMPQ = 'I', then: */
|
|
|
|
/* On exit, if INFO = 0, U contains the left singular vectors */
|
|
|
|
/* of the bidiagonal matrix. */
|
|
|
|
/* For other values of COMPQ, U is not referenced. */
|
|
|
|
|
|
|
|
/* LDU (input) INTEGER */
|
|
|
|
/* The leading dimension of the array U. LDU >= 1. */
|
|
|
|
/* If singular vectors are desired, then LDU >= max( 1, N ). */
|
|
|
|
|
|
|
|
/* VT (output) REAL array, dimension (LDVT,N) */
|
|
|
|
/* If COMPQ = 'I', then: */
|
|
|
|
/* On exit, if INFO = 0, VT' contains the right singular */
|
|
|
|
/* vectors of the bidiagonal matrix. */
|
|
|
|
/* For other values of COMPQ, VT is not referenced. */
|
|
|
|
|
|
|
|
/* LDVT (input) INTEGER */
|
|
|
|
/* The leading dimension of the array VT. LDVT >= 1. */
|
|
|
|
/* If singular vectors are desired, then LDVT >= max( 1, N ). */
|
|
|
|
|
|
|
|
/* Q (output) REAL array, dimension (LDQ) */
|
|
|
|
/* If COMPQ = 'P', then: */
|
|
|
|
/* On exit, if INFO = 0, Q and IQ contain the left */
|
|
|
|
/* and right singular vectors in a compact form, */
|
|
|
|
/* requiring O(N log N) space instead of 2*N**2. */
|
|
|
|
/* In particular, Q contains all the REAL data in */
|
|
|
|
/* LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1)))) */
|
|
|
|
/* words of memory, where SMLSIZ is returned by ILAENV and */
|
|
|
|
/* is equal to the maximum size of the subproblems at the */
|
|
|
|
/* bottom of the computation tree (usually about 25). */
|
|
|
|
/* For other values of COMPQ, Q is not referenced. */
|
|
|
|
|
|
|
|
/* IQ (output) INTEGER array, dimension (LDIQ) */
|
|
|
|
/* If COMPQ = 'P', then: */
|
|
|
|
/* On exit, if INFO = 0, Q and IQ contain the left */
|
|
|
|
/* and right singular vectors in a compact form, */
|
|
|
|
/* requiring O(N log N) space instead of 2*N**2. */
|
|
|
|
/* In particular, IQ contains all INTEGER data in */
|
|
|
|
/* LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1)))) */
|
|
|
|
/* words of memory, where SMLSIZ is returned by ILAENV and */
|
|
|
|
/* is equal to the maximum size of the subproblems at the */
|
|
|
|
/* bottom of the computation tree (usually about 25). */
|
|
|
|
/* For other values of COMPQ, IQ is not referenced. */
|
|
|
|
|
|
|
|
/* WORK (workspace) REAL array, dimension (MAX(1,LWORK)) */
|
|
|
|
/* If COMPQ = 'N' then LWORK >= (4 * N). */
|
|
|
|
/* If COMPQ = 'P' then LWORK >= (6 * N). */
|
|
|
|
/* If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N). */
|
|
|
|
|
|
|
|
/* IWORK (workspace) INTEGER array, dimension (8*N) */
|
|
|
|
|
|
|
|
/* INFO (output) INTEGER */
|
|
|
|
/* = 0: successful exit. */
|
|
|
|
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
|
|
|
|
/* > 0: The algorithm failed to compute an singular value. */
|
|
|
|
/* The update process of divide and conquer failed. */
|
|
|
|
|
|
|
|
/* Further Details */
|
|
|
|
/* =============== */
|
|
|
|
|
|
|
|
/* Based on contributions by */
|
|
|
|
/* Ming Gu and Huan Ren, Computer Science Division, University of */
|
|
|
|
/* California at Berkeley, USA */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* Changed dimension statement in comment describing E from (N) to */
|
|
|
|
/* (N-1). Sven, 17 Feb 05. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
|
|
/* .. Parameters .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Local Scalars .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. External Functions .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. External Subroutines .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Intrinsic Functions .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Executable Statements .. */
|
|
|
|
|
|
|
|
/* Test the input parameters. */
|
|
|
|
|
|
|
|
/* Parameter adjustments */
|
|
|
|
--d__;
|
|
|
|
--e;
|
|
|
|
u_dim1 = *ldu;
|
|
|
|
u_offset = 1 + u_dim1;
|
|
|
|
u -= u_offset;
|
|
|
|
vt_dim1 = *ldvt;
|
|
|
|
vt_offset = 1 + vt_dim1;
|
|
|
|
vt -= vt_offset;
|
|
|
|
--q;
|
|
|
|
--iq;
|
|
|
|
--work;
|
|
|
|
--iwork;
|
|
|
|
|
|
|
|
/* Function Body */
|
|
|
|
*info = 0;
|
|
|
|
|
|
|
|
iuplo = 0;
|
|
|
|
if (lsame_(uplo, "U")) {
|
|
|
|
iuplo = 1;
|
|
|
|
}
|
|
|
|
if (lsame_(uplo, "L")) {
|
|
|
|
iuplo = 2;
|
|
|
|
}
|
|
|
|
if (lsame_(compq, "N")) {
|
|
|
|
icompq = 0;
|
|
|
|
} else if (lsame_(compq, "P")) {
|
|
|
|
icompq = 1;
|
|
|
|
} else if (lsame_(compq, "I")) {
|
|
|
|
icompq = 2;
|
|
|
|
} else {
|
|
|
|
icompq = -1;
|
|
|
|
}
|
|
|
|
if (iuplo == 0) {
|
|
|
|
*info = -1;
|
|
|
|
} else if (icompq < 0) {
|
|
|
|
*info = -2;
|
|
|
|
} else if (*n < 0) {
|
|
|
|
*info = -3;
|
|
|
|
} else if (*ldu < 1 || icompq == 2 && *ldu < *n) {
|
|
|
|
*info = -7;
|
|
|
|
} else if (*ldvt < 1 || icompq == 2 && *ldvt < *n) {
|
|
|
|
*info = -9;
|
|
|
|
}
|
|
|
|
if (*info != 0) {
|
|
|
|
i__1 = -(*info);
|
|
|
|
xerbla_("SBDSDC", &i__1);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Quick return if possible */
|
|
|
|
|
|
|
|
if (*n == 0) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
smlsiz = ilaenv_(&c__9, "SBDSDC", " ", &c__0, &c__0, &c__0, &c__0);
|
|
|
|
if (*n == 1) {
|
|
|
|
if (icompq == 1) {
|
|
|
|
q[1] = r_sign(&c_b15, &d__[1]);
|
|
|
|
q[smlsiz * *n + 1] = 1.f;
|
|
|
|
} else if (icompq == 2) {
|
|
|
|
u[u_dim1 + 1] = r_sign(&c_b15, &d__[1]);
|
|
|
|
vt[vt_dim1 + 1] = 1.f;
|
|
|
|
}
|
|
|
|
d__[1] = dabs(d__[1]);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
nm1 = *n - 1;
|
|
|
|
|
|
|
|
/* If matrix lower bidiagonal, rotate to be upper bidiagonal */
|
|
|
|
/* by applying Givens rotations on the left */
|
|
|
|
|
|
|
|
wstart = 1;
|
|
|
|
qstart = 3;
|
|
|
|
if (icompq == 1) {
|
|
|
|
scopy_(n, &d__[1], &c__1, &q[1], &c__1);
|
|
|
|
i__1 = *n - 1;
|
|
|
|
scopy_(&i__1, &e[1], &c__1, &q[*n + 1], &c__1);
|
|
|
|
}
|
|
|
|
if (iuplo == 2) {
|
|
|
|
qstart = 5;
|
|
|
|
wstart = (*n << 1) - 1;
|
|
|
|
i__1 = *n - 1;
|
|
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
|
|
|
|
d__[i__] = r__;
|
|
|
|
e[i__] = sn * d__[i__ + 1];
|
|
|
|
d__[i__ + 1] = cs * d__[i__ + 1];
|
|
|
|
if (icompq == 1) {
|
|
|
|
q[i__ + (*n << 1)] = cs;
|
|
|
|
q[i__ + *n * 3] = sn;
|
|
|
|
} else if (icompq == 2) {
|
|
|
|
work[i__] = cs;
|
|
|
|
work[nm1 + i__] = -sn;
|
|
|
|
}
|
|
|
|
/* L10: */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If ICOMPQ = 0, use SLASDQ to compute the singular values. */
|
|
|
|
|
|
|
|
if (icompq == 0) {
|
|
|
|
slasdq_("U", &c__0, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
|
|
|
|
vt_offset], ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
|
|
|
|
wstart], info);
|
|
|
|
goto L40;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If N is smaller than the minimum divide size SMLSIZ, then solve */
|
|
|
|
/* the problem with another solver. */
|
|
|
|
|
|
|
|
if (*n <= smlsiz) {
|
|
|
|
if (icompq == 2) {
|
|
|
|
slaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
|
|
|
|
slaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
|
|
|
|
slasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
|
|
|
|
, ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
|
|
|
|
wstart], info);
|
|
|
|
} else if (icompq == 1) {
|
|
|
|
iu = 1;
|
|
|
|
ivt = iu + *n;
|
|
|
|
slaset_("A", n, n, &c_b29, &c_b15, &q[iu + (qstart - 1) * *n], n);
|
|
|
|
slaset_("A", n, n, &c_b29, &c_b15, &q[ivt + (qstart - 1) * *n], n);
|
|
|
|
slasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &q[ivt + (
|
|
|
|
qstart - 1) * *n], n, &q[iu + (qstart - 1) * *n], n, &q[
|
|
|
|
iu + (qstart - 1) * *n], n, &work[wstart], info);
|
|
|
|
}
|
|
|
|
goto L40;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (icompq == 2) {
|
|
|
|
slaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
|
|
|
|
slaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Scale. */
|
|
|
|
|
|
|
|
orgnrm = slanst_("M", n, &d__[1], &e[1]);
|
|
|
|
if (orgnrm == 0.f) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
slascl_("G", &c__0, &c__0, &orgnrm, &c_b15, n, &c__1, &d__[1], n, &ierr);
|
|
|
|
slascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &nm1, &c__1, &e[1], &nm1, &
|
|
|
|
ierr);
|
|
|
|
|
|
|
|
eps = slamch_("Epsilon");
|
|
|
|
|
|
|
|
mlvl = (integer) (log((real) (*n) / (real) (smlsiz + 1)) / log(2.f)) + 1;
|
|
|
|
smlszp = smlsiz + 1;
|
|
|
|
|
|
|
|
if (icompq == 1) {
|
|
|
|
iu = 1;
|
|
|
|
ivt = smlsiz + 1;
|
|
|
|
difl = ivt + smlszp;
|
|
|
|
difr = difl + mlvl;
|
|
|
|
z__ = difr + (mlvl << 1);
|
|
|
|
ic = z__ + mlvl;
|
|
|
|
is = ic + 1;
|
|
|
|
poles = is + 1;
|
|
|
|
givnum = poles + (mlvl << 1);
|
|
|
|
|
|
|
|
k = 1;
|
|
|
|
givptr = 2;
|
|
|
|
perm = 3;
|
|
|
|
givcol = perm + mlvl;
|
|
|
|
}
|
|
|
|
|
|
|
|
i__1 = *n;
|
|
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
if ((r__1 = d__[i__], dabs(r__1)) < eps) {
|
|
|
|
d__[i__] = r_sign(&eps, &d__[i__]);
|
|
|
|
}
|
|
|
|
/* L20: */
|
|
|
|
}
|
|
|
|
|
|
|
|
start = 1;
|
|
|
|
sqre = 0;
|
|
|
|
|
|
|
|
i__1 = nm1;
|
|
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
if ((r__1 = e[i__], dabs(r__1)) < eps || i__ == nm1) {
|
|
|
|
|
|
|
|
/* Subproblem found. First determine its size and then */
|
|
|
|
/* apply divide and conquer on it. */
|
|
|
|
|
|
|
|
if (i__ < nm1) {
|
|
|
|
|
|
|
|
/* A subproblem with E(I) small for I < NM1. */
|
|
|
|
|
|
|
|
nsize = i__ - start + 1;
|
|
|
|
} else if ((r__1 = e[i__], dabs(r__1)) >= eps) {
|
|
|
|
|
|
|
|
/* A subproblem with E(NM1) not too small but I = NM1. */
|
|
|
|
|
|
|
|
nsize = *n - start + 1;
|
|
|
|
} else {
|
|
|
|
|
|
|
|
/* A subproblem with E(NM1) small. This implies an */
|
|
|
|
/* 1-by-1 subproblem at D(N). Solve this 1-by-1 problem */
|
|
|
|
/* first. */
|
|
|
|
|
|
|
|
nsize = i__ - start + 1;
|
|
|
|
if (icompq == 2) {
|
|
|
|
u[*n + *n * u_dim1] = r_sign(&c_b15, &d__[*n]);
|
|
|
|
vt[*n + *n * vt_dim1] = 1.f;
|
|
|
|
} else if (icompq == 1) {
|
|
|
|
q[*n + (qstart - 1) * *n] = r_sign(&c_b15, &d__[*n]);
|
|
|
|
q[*n + (smlsiz + qstart - 1) * *n] = 1.f;
|
|
|
|
}
|
|
|
|
d__[*n] = (r__1 = d__[*n], dabs(r__1));
|
|
|
|
}
|
|
|
|
if (icompq == 2) {
|
|
|
|
slasd0_(&nsize, &sqre, &d__[start], &e[start], &u[start +
|
|
|
|
start * u_dim1], ldu, &vt[start + start * vt_dim1],
|
|
|
|
ldvt, &smlsiz, &iwork[1], &work[wstart], info);
|
|
|
|
} else {
|
|
|
|
slasda_(&icompq, &smlsiz, &nsize, &sqre, &d__[start], &e[
|
|
|
|
start], &q[start + (iu + qstart - 2) * *n], n, &q[
|
|
|
|
start + (ivt + qstart - 2) * *n], &iq[start + k * *n],
|
|
|
|
&q[start + (difl + qstart - 2) * *n], &q[start + (
|
|
|
|
difr + qstart - 2) * *n], &q[start + (z__ + qstart -
|
|
|
|
2) * *n], &q[start + (poles + qstart - 2) * *n], &iq[
|
|
|
|
start + givptr * *n], &iq[start + givcol * *n], n, &
|
|
|
|
iq[start + perm * *n], &q[start + (givnum + qstart -
|
|
|
|
2) * *n], &q[start + (ic + qstart - 2) * *n], &q[
|
|
|
|
start + (is + qstart - 2) * *n], &work[wstart], &
|
|
|
|
iwork[1], info);
|
|
|
|
if (*info != 0) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
start = i__ + 1;
|
|
|
|
}
|
|
|
|
/* L30: */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Unscale */
|
|
|
|
|
|
|
|
slascl_("G", &c__0, &c__0, &c_b15, &orgnrm, n, &c__1, &d__[1], n, &ierr);
|
|
|
|
L40:
|
|
|
|
|
|
|
|
/* Use Selection Sort to minimize swaps of singular vectors */
|
|
|
|
|
|
|
|
i__1 = *n;
|
|
|
|
for (ii = 2; ii <= i__1; ++ii) {
|
|
|
|
i__ = ii - 1;
|
|
|
|
kk = i__;
|
|
|
|
p = d__[i__];
|
|
|
|
i__2 = *n;
|
|
|
|
for (j = ii; j <= i__2; ++j) {
|
|
|
|
if (d__[j] > p) {
|
|
|
|
kk = j;
|
|
|
|
p = d__[j];
|
|
|
|
}
|
|
|
|
/* L50: */
|
|
|
|
}
|
|
|
|
if (kk != i__) {
|
|
|
|
d__[kk] = d__[i__];
|
|
|
|
d__[i__] = p;
|
|
|
|
if (icompq == 1) {
|
|
|
|
iq[i__] = kk;
|
|
|
|
} else if (icompq == 2) {
|
|
|
|
sswap_(n, &u[i__ * u_dim1 + 1], &c__1, &u[kk * u_dim1 + 1], &
|
|
|
|
c__1);
|
|
|
|
sswap_(n, &vt[i__ + vt_dim1], ldvt, &vt[kk + vt_dim1], ldvt);
|
|
|
|
}
|
|
|
|
} else if (icompq == 1) {
|
|
|
|
iq[i__] = i__;
|
|
|
|
}
|
|
|
|
/* L60: */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO */
|
|
|
|
|
|
|
|
if (icompq == 1) {
|
|
|
|
if (iuplo == 1) {
|
|
|
|
iq[*n] = 1;
|
|
|
|
} else {
|
|
|
|
iq[*n] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If B is lower bidiagonal, update U by those Givens rotations */
|
|
|
|
/* which rotated B to be upper bidiagonal */
|
|
|
|
|
|
|
|
if (iuplo == 2 && icompq == 2) {
|
|
|
|
slasr_("L", "V", "B", n, n, &work[1], &work[*n], &u[u_offset], ldu);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* End of SBDSDC */
|
|
|
|
|
|
|
|
} /* sbdsdc_ */
|