|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
// (3-clause BSD License)
|
|
|
|
//
|
|
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * Neither the names of the copyright holders nor the names of the contributors
|
|
|
|
// may be used to endorse or promote products derived from this software
|
|
|
|
// without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall copyright holders or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#include "npy_blob.hpp"
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
|
|
|
|
template<typename TString>
|
|
|
|
static std::string _tf(TString filename)
|
|
|
|
{
|
|
|
|
return (getOpenCVExtraDir() + "/dnn/") + filename;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Test_Darknet, read_tiny_yolo_voc)
|
|
|
|
{
|
|
|
|
Net net = readNetFromDarknet(_tf("tiny-yolo-voc.cfg"));
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Test_Darknet, read_yolo_voc)
|
|
|
|
{
|
|
|
|
Net net = readNetFromDarknet(_tf("yolo-voc.cfg"));
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Test_Darknet, read_yolo_voc_stream)
|
|
|
|
{
|
|
|
|
applyTestTag(CV_TEST_TAG_MEMORY_1GB);
|
|
|
|
Mat ref;
|
|
|
|
Mat sample = imread(_tf("dog416.png"));
|
|
|
|
Mat inp = blobFromImage(sample, 1.0/255, Size(416, 416), Scalar(), true, false);
|
|
|
|
const std::string cfgFile = findDataFile("dnn/yolo-voc.cfg");
|
|
|
|
const std::string weightsFile = findDataFile("dnn/yolo-voc.weights", false);
|
|
|
|
// Import by paths.
|
|
|
|
{
|
|
|
|
Net net = readNetFromDarknet(cfgFile, weightsFile);
|
|
|
|
net.setInput(inp);
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
|
|
ref = net.forward();
|
|
|
|
}
|
|
|
|
// Import from bytes array.
|
|
|
|
{
|
|
|
|
std::vector<char> cfg, weights;
|
|
|
|
readFileContent(cfgFile, cfg);
|
|
|
|
readFileContent(weightsFile, weights);
|
|
|
|
|
|
|
|
Net net = readNetFromDarknet(cfg.data(), cfg.size(), weights.data(), weights.size());
|
|
|
|
net.setInput(inp);
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
|
|
Mat out = net.forward();
|
|
|
|
normAssert(ref, out);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
class Test_Darknet_layers : public DNNTestLayer
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
void testDarknetLayer(const std::string& name, bool hasWeights = false, bool testBatchProcessing = true)
|
|
|
|
{
|
|
|
|
SCOPED_TRACE(name);
|
|
|
|
Mat inp = blobFromNPY(findDataFile("dnn/darknet/" + name + "_in.npy"));
|
|
|
|
Mat ref = blobFromNPY(findDataFile("dnn/darknet/" + name + "_out.npy"));
|
|
|
|
|
|
|
|
std::string cfg = findDataFile("dnn/darknet/" + name + ".cfg");
|
|
|
|
std::string model = "";
|
|
|
|
if (hasWeights)
|
|
|
|
model = findDataFile("dnn/darknet/" + name + ".weights");
|
|
|
|
|
|
|
|
checkBackend(&inp, &ref);
|
|
|
|
|
|
|
|
Net net = readNet(cfg, model);
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
net.setInput(inp);
|
|
|
|
Mat out = net.forward();
|
|
|
|
normAssert(out, ref, "", default_l1, default_lInf);
|
|
|
|
|
|
|
|
if (inp.size[0] == 1 && testBatchProcessing) // test handling of batch size
|
|
|
|
{
|
|
|
|
SCOPED_TRACE("batch size 2");
|
|
|
|
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
if (target == DNN_TARGET_MYRIAD && name == "shortcut")
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
std::vector<int> sz2 = shape(inp);
|
|
|
|
sz2[0] = 2;
|
|
|
|
|
|
|
|
Net net2 = readNet(cfg, model);
|
|
|
|
net2.setPreferableBackend(backend);
|
|
|
|
net2.setPreferableTarget(target);
|
|
|
|
Range ranges0[4] = { Range(0, 1), Range::all(), Range::all(), Range::all() };
|
|
|
|
Range ranges1[4] = { Range(1, 2), Range::all(), Range::all(), Range::all() };
|
|
|
|
Mat inp2(sz2, inp.type(), Scalar::all(0));
|
|
|
|
inp.copyTo(inp2(ranges0));
|
|
|
|
inp.copyTo(inp2(ranges1));
|
|
|
|
net2.setInput(inp2);
|
|
|
|
Mat out2 = net2.forward();
|
|
|
|
EXPECT_EQ(0, cv::norm(out2(ranges0), out2(ranges1), NORM_INF)) << "Batch result is not equal: " << name;
|
|
|
|
|
|
|
|
Mat ref2 = ref;
|
|
|
|
if (ref.dims == 2 && out2.dims == 3)
|
|
|
|
{
|
|
|
|
int ref_3d_sizes[3] = {1, ref.rows, ref.cols};
|
|
|
|
ref2 = Mat(3, ref_3d_sizes, ref.type(), (void*)ref.data);
|
|
|
|
}
|
|
|
|
/*else if (ref.dims == 3 && out2.dims == 4)
|
|
|
|
{
|
|
|
|
int ref_4d_sizes[4] = {1, ref.size[0], ref.size[1], ref.size[2]};
|
|
|
|
ref2 = Mat(4, ref_4d_sizes, ref.type(), (void*)ref.data);
|
|
|
|
}*/
|
|
|
|
ASSERT_EQ(out2.dims, ref2.dims) << ref.dims;
|
|
|
|
|
|
|
|
normAssert(out2(ranges0), ref2, "", default_l1, default_lInf);
|
|
|
|
normAssert(out2(ranges1), ref2, "", default_l1, default_lInf);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class Test_Darknet_nets : public DNNTestLayer
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
// Test object detection network from Darknet framework.
|
|
|
|
void testDarknetModel(const std::string& cfg, const std::string& weights,
|
|
|
|
const std::vector<std::vector<int> >& refClassIds,
|
|
|
|
const std::vector<std::vector<float> >& refConfidences,
|
|
|
|
const std::vector<std::vector<Rect2d> >& refBoxes,
|
|
|
|
double scoreDiff, double iouDiff, float confThreshold = 0.24, float nmsThreshold = 0.4)
|
|
|
|
{
|
|
|
|
checkBackend();
|
|
|
|
|
|
|
|
Mat img1 = imread(_tf("dog416.png"));
|
|
|
|
Mat img2 = imread(_tf("street.png"));
|
|
|
|
std::vector<Mat> samples(2);
|
|
|
|
samples[0] = img1; samples[1] = img2;
|
|
|
|
|
|
|
|
// determine test type, whether batch or single img
|
|
|
|
int batch_size = refClassIds.size();
|
|
|
|
CV_Assert(batch_size == 1 || batch_size == 2);
|
|
|
|
samples.resize(batch_size);
|
|
|
|
|
|
|
|
Mat inp = blobFromImages(samples, 1.0/255, Size(416, 416), Scalar(), true, false);
|
|
|
|
|
|
|
|
Net net = readNet(findDataFile("dnn/" + cfg),
|
|
|
|
findDataFile("dnn/" + weights, false));
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
net.setInput(inp);
|
|
|
|
std::vector<Mat> outs;
|
|
|
|
net.forward(outs, net.getUnconnectedOutLayersNames());
|
|
|
|
|
|
|
|
for (int b = 0; b < batch_size; ++b)
|
|
|
|
{
|
|
|
|
std::vector<int> classIds;
|
|
|
|
std::vector<float> confidences;
|
|
|
|
std::vector<Rect2d> boxes;
|
|
|
|
for (int i = 0; i < outs.size(); ++i)
|
|
|
|
{
|
|
|
|
Mat out;
|
|
|
|
if (batch_size > 1){
|
|
|
|
// get the sample slice from 3D matrix (batch, box, classes+5)
|
|
|
|
Range ranges[3] = {Range(b, b+1), Range::all(), Range::all()};
|
|
|
|
out = outs[i](ranges).reshape(1, outs[i].size[1]);
|
|
|
|
}else{
|
|
|
|
out = outs[i];
|
|
|
|
}
|
|
|
|
for (int j = 0; j < out.rows; ++j)
|
|
|
|
{
|
|
|
|
Mat scores = out.row(j).colRange(5, out.cols);
|
|
|
|
double confidence;
|
|
|
|
Point maxLoc;
|
|
|
|
minMaxLoc(scores, 0, &confidence, 0, &maxLoc);
|
|
|
|
|
|
|
|
if (confidence > confThreshold) {
|
|
|
|
float* detection = out.ptr<float>(j);
|
|
|
|
double centerX = detection[0];
|
|
|
|
double centerY = detection[1];
|
|
|
|
double width = detection[2];
|
|
|
|
double height = detection[3];
|
|
|
|
boxes.push_back(Rect2d(centerX - 0.5 * width, centerY - 0.5 * height,
|
|
|
|
width, height));
|
|
|
|
confidences.push_back(confidence);
|
|
|
|
classIds.push_back(maxLoc.x);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// here we need NMS of boxes
|
|
|
|
std::vector<int> indices;
|
|
|
|
NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices);
|
|
|
|
|
|
|
|
std::vector<int> nms_classIds;
|
|
|
|
std::vector<float> nms_confidences;
|
|
|
|
std::vector<Rect2d> nms_boxes;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < indices.size(); ++i)
|
|
|
|
{
|
|
|
|
int idx = indices[i];
|
|
|
|
Rect2d box = boxes[idx];
|
|
|
|
float conf = confidences[idx];
|
|
|
|
int class_id = classIds[idx];
|
|
|
|
nms_boxes.push_back(box);
|
|
|
|
nms_confidences.push_back(conf);
|
|
|
|
nms_classIds.push_back(class_id);
|
|
|
|
#if 0 // use to update test reference data
|
|
|
|
std::cout << b << ", " << class_id << ", " << conf << "f, "
|
|
|
|
<< box.x << "f, " << box.y << "f, "
|
|
|
|
<< box.x + box.width << "f, " << box.y + box.height << "f,"
|
|
|
|
<< std::endl;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cvIsNaN(iouDiff))
|
|
|
|
{
|
|
|
|
if (b == 0)
|
|
|
|
std::cout << "Skip accuracy checks" << std::endl;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
normAssertDetections(refClassIds[b], refConfidences[b], refBoxes[b], nms_classIds,
|
|
|
|
nms_confidences, nms_boxes, format("batch size %d, sample %d\n", batch_size, b).c_str(), confThreshold, scoreDiff, iouDiff);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void testDarknetModel(const std::string& cfg, const std::string& weights,
|
|
|
|
const std::vector<int>& refClassIds,
|
|
|
|
const std::vector<float>& refConfidences,
|
|
|
|
const std::vector<Rect2d>& refBoxes,
|
|
|
|
double scoreDiff, double iouDiff, float confThreshold = 0.24, float nmsThreshold = 0.4)
|
|
|
|
{
|
|
|
|
testDarknetModel(cfg, weights,
|
|
|
|
std::vector<std::vector<int> >(1, refClassIds),
|
|
|
|
std::vector<std::vector<float> >(1, refConfidences),
|
|
|
|
std::vector<std::vector<Rect2d> >(1, refBoxes),
|
|
|
|
scoreDiff, iouDiff, confThreshold, nmsThreshold);
|
|
|
|
}
|
|
|
|
|
|
|
|
void testDarknetModel(const std::string& cfg, const std::string& weights,
|
|
|
|
const cv::Mat& ref, double scoreDiff, double iouDiff,
|
|
|
|
float confThreshold = 0.24, float nmsThreshold = 0.4)
|
|
|
|
{
|
|
|
|
CV_Assert(ref.cols == 7);
|
|
|
|
std::vector<std::vector<int> > refClassIds;
|
|
|
|
std::vector<std::vector<float> > refScores;
|
|
|
|
std::vector<std::vector<Rect2d> > refBoxes;
|
|
|
|
for (int i = 0; i < ref.rows; ++i)
|
|
|
|
{
|
|
|
|
int batchId = static_cast<int>(ref.at<float>(i, 0));
|
|
|
|
int classId = static_cast<int>(ref.at<float>(i, 1));
|
|
|
|
float score = ref.at<float>(i, 2);
|
|
|
|
float left = ref.at<float>(i, 3);
|
|
|
|
float top = ref.at<float>(i, 4);
|
|
|
|
float right = ref.at<float>(i, 5);
|
|
|
|
float bottom = ref.at<float>(i, 6);
|
|
|
|
Rect2d box(left, top, right - left, bottom - top);
|
|
|
|
if (batchId >= refClassIds.size())
|
|
|
|
{
|
|
|
|
refClassIds.resize(batchId + 1);
|
|
|
|
refScores.resize(batchId + 1);
|
|
|
|
refBoxes.resize(batchId + 1);
|
|
|
|
}
|
|
|
|
refClassIds[batchId].push_back(classId);
|
|
|
|
refScores[batchId].push_back(score);
|
|
|
|
refBoxes[batchId].push_back(box);
|
|
|
|
}
|
|
|
|
testDarknetModel(cfg, weights, refClassIds, refScores, refBoxes,
|
|
|
|
scoreDiff, iouDiff, confThreshold, nmsThreshold);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_P(Test_Darknet_nets, YoloVoc)
|
|
|
|
{
|
|
|
|
applyTestTag(
|
|
|
|
#if defined(OPENCV_32BIT_CONFIGURATION) && defined(HAVE_OPENCL)
|
|
|
|
CV_TEST_TAG_MEMORY_2GB,
|
|
|
|
#else
|
|
|
|
CV_TEST_TAG_MEMORY_1GB,
|
|
|
|
#endif
|
|
|
|
CV_TEST_TAG_LONG
|
|
|
|
);
|
|
|
|
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
|
|
|
|
#endif
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) &&
|
|
|
|
target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); // need to update check function
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// batchId, classId, confidence, left, top, right, bottom
|
|
|
|
Mat ref = (Mat_<float>(6, 7) << 0, 6, 0.750469f, 0.577374f, 0.127391f, 0.902949f, 0.300809f, // a car
|
|
|
|
0, 1, 0.780879f, 0.270762f, 0.264102f, 0.732475f, 0.745412f, // a bicycle
|
|
|
|
0, 11, 0.901615f, 0.1386f, 0.338509f, 0.421337f, 0.938789f, // a dog
|
|
|
|
1, 14, 0.623813f, 0.183179f, 0.381921f, 0.247726f, 0.625847f, // a person
|
|
|
|
1, 6, 0.667770f, 0.446555f, 0.453578f, 0.499986f, 0.519167f, // a car
|
|
|
|
1, 6, 0.844947f, 0.637058f, 0.460398f, 0.828508f, 0.66427f); // a car
|
|
|
|
|
|
|
|
double nmsThreshold = (target == DNN_TARGET_MYRIAD) ? 0.397 : 0.4;
|
|
|
|
double scoreDiff = 8e-5, iouDiff = 3e-4;
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
|
|
|
|
{
|
|
|
|
scoreDiff = 1e-2;
|
|
|
|
iouDiff = 0.018;
|
|
|
|
}
|
|
|
|
else if (target == DNN_TARGET_CUDA_FP16)
|
|
|
|
{
|
|
|
|
scoreDiff = 0.03;
|
|
|
|
iouDiff = 0.018;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string config_file = "yolo-voc.cfg";
|
|
|
|
std::string weights_file = "yolo-voc.weights";
|
|
|
|
|
|
|
|
{
|
|
|
|
SCOPED_TRACE("batch size 1");
|
|
|
|
testDarknetModel(config_file, weights_file, ref.rowRange(0, 3), scoreDiff, iouDiff);
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
SCOPED_TRACE("batch size 2");
|
|
|
|
testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff, 0.24, nmsThreshold);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Darknet_nets, TinyYoloVoc)
|
|
|
|
{
|
|
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
|
|
|
|
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) &&
|
|
|
|
target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); // need to update check function
|
|
|
|
#endif
|
|
|
|
// batchId, classId, confidence, left, top, right, bottom
|
|
|
|
Mat ref = (Mat_<float>(4, 7) << 0, 6, 0.761967f, 0.579042f, 0.159161f, 0.894482f, 0.31994f, // a car
|
|
|
|
0, 11, 0.780595f, 0.129696f, 0.386467f, 0.445275f, 0.920994f, // a dog
|
|
|
|
1, 6, 0.651450f, 0.460526f, 0.458019f, 0.522527f, 0.5341f, // a car
|
|
|
|
1, 6, 0.928758f, 0.651024f, 0.463539f, 0.823784f, 0.654998f); // a car
|
|
|
|
|
|
|
|
double scoreDiff = 8e-5, iouDiff = 3e-4;
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
|
|
|
|
{
|
|
|
|
scoreDiff = 8e-3;
|
|
|
|
iouDiff = 0.018;
|
|
|
|
}
|
|
|
|
else if(target == DNN_TARGET_CUDA_FP16)
|
|
|
|
{
|
|
|
|
scoreDiff = 0.008;
|
|
|
|
iouDiff = 0.02;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string config_file = "tiny-yolo-voc.cfg";
|
|
|
|
std::string weights_file = "tiny-yolo-voc.weights";
|
|
|
|
|
|
|
|
{
|
|
|
|
SCOPED_TRACE("batch size 1");
|
|
|
|
testDarknetModel(config_file, weights_file, ref.rowRange(0, 2), scoreDiff, iouDiff);
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
SCOPED_TRACE("batch size 2");
|
|
|
|
testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
|
|
static const std::chrono::milliseconds async_timeout(10000);
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<std::string, tuple<Backend, Target> > > Test_Darknet_nets_async;
|
|
|
|
TEST_P(Test_Darknet_nets_async, Accuracy)
|
|
|
|
{
|
|
|
|
Backend backendId = get<0>(get<1>(GetParam()));
|
|
|
|
Target targetId = get<1>(get<1>(GetParam()));
|
|
|
|
|
|
|
|
if (INF_ENGINE_VER_MAJOR_LT(2019020000) && backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
|
|
|
|
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
|
|
|
|
std::string prefix = get<0>(GetParam());
|
|
|
|
|
|
|
|
if (targetId == DNN_TARGET_MYRIAD && prefix == "yolov4") // NC_OUT_OF_MEMORY
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
|
|
|
|
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
throw SkipTestException("No support for async forward");
|
|
|
|
|
|
|
|
const int numInputs = 2;
|
|
|
|
std::vector<Mat> inputs(numInputs);
|
|
|
|
int blobSize[] = {1, 3, 416, 416};
|
|
|
|
for (int i = 0; i < numInputs; ++i)
|
|
|
|
{
|
|
|
|
inputs[i].create(4, &blobSize[0], CV_32F);
|
|
|
|
randu(inputs[i], 0, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
Net netSync = readNet(findDataFile("dnn/" + prefix + ".cfg"),
|
|
|
|
findDataFile("dnn/" + prefix + ".weights", false));
|
|
|
|
netSync.setPreferableBackend(backendId);
|
|
|
|
netSync.setPreferableTarget(targetId);
|
|
|
|
|
|
|
|
// Run synchronously.
|
|
|
|
std::vector<Mat> refs(numInputs);
|
|
|
|
for (int i = 0; i < numInputs; ++i)
|
|
|
|
{
|
|
|
|
netSync.setInput(inputs[i]);
|
|
|
|
refs[i] = netSync.forward().clone();
|
|
|
|
}
|
|
|
|
|
|
|
|
Net netAsync = readNet(findDataFile("dnn/" + prefix + ".cfg"),
|
|
|
|
findDataFile("dnn/" + prefix + ".weights", false));
|
|
|
|
netAsync.setPreferableBackend(backendId);
|
|
|
|
netAsync.setPreferableTarget(targetId);
|
|
|
|
|
|
|
|
// Run asynchronously. To make test more robust, process inputs in the reversed order.
|
|
|
|
for (int i = numInputs - 1; i >= 0; --i)
|
|
|
|
{
|
|
|
|
netAsync.setInput(inputs[i]);
|
|
|
|
|
|
|
|
AsyncArray out = netAsync.forwardAsync();
|
|
|
|
ASSERT_TRUE(out.valid());
|
|
|
|
Mat result;
|
|
|
|
EXPECT_TRUE(out.get(result, async_timeout));
|
|
|
|
normAssert(refs[i], result, format("Index: %d", i).c_str(), 0, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Darknet_nets_async, Combine(
|
|
|
|
Values("yolo-voc", "tiny-yolo-voc", "yolov3", "yolov4", "yolov4-tiny"),
|
|
|
|
dnnBackendsAndTargets()
|
|
|
|
));
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
TEST_P(Test_Darknet_nets, YOLOv3)
|
|
|
|
{
|
|
|
|
applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB));
|
|
|
|
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
|
|
|
|
// batchId, classId, confidence, left, top, right, bottom
|
|
|
|
const int N0 = 3;
|
|
|
|
const int N1 = 6;
|
|
|
|
static const float ref_[/* (N0 + N1) * 7 */] = {
|
|
|
|
0, 16, 0.998836f, 0.160024f, 0.389964f, 0.417885f, 0.943716f,
|
|
|
|
0, 1, 0.987908f, 0.150913f, 0.221933f, 0.742255f, 0.746261f,
|
|
|
|
0, 7, 0.952983f, 0.614621f, 0.150257f, 0.901368f, 0.289251f,
|
|
|
|
|
|
|
|
1, 2, 0.997412f, 0.647584f, 0.459939f, 0.821037f, 0.663947f,
|
|
|
|
1, 2, 0.989633f, 0.450719f, 0.463353f, 0.496306f, 0.522258f,
|
|
|
|
1, 0, 0.980053f, 0.195856f, 0.378454f, 0.258626f, 0.629257f,
|
|
|
|
1, 9, 0.785341f, 0.665503f, 0.373543f, 0.688893f, 0.439244f,
|
|
|
|
1, 9, 0.733275f, 0.376029f, 0.315694f, 0.401776f, 0.395165f,
|
|
|
|
1, 9, 0.384815f, 0.659824f, 0.372389f, 0.673927f, 0.429412f,
|
|
|
|
};
|
|
|
|
Mat ref(N0 + N1, 7, CV_32FC1, (void*)ref_);
|
|
|
|
|
|
|
|
double scoreDiff = 8e-5, iouDiff = 3e-4;
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
|
|
|
|
{
|
|
|
|
scoreDiff = 0.006;
|
|
|
|
iouDiff = 0.042;
|
|
|
|
}
|
|
|
|
else if (target == DNN_TARGET_CUDA_FP16)
|
|
|
|
{
|
|
|
|
scoreDiff = 0.04;
|
|
|
|
iouDiff = 0.03;
|
|
|
|
}
|
|
|
|
std::string config_file = "yolov3.cfg";
|
|
|
|
std::string weights_file = "yolov3.weights";
|
|
|
|
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD &&
|
|
|
|
getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
|
|
{
|
|
|
|
scoreDiff = 0.04;
|
|
|
|
iouDiff = 0.2;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
{
|
|
|
|
SCOPED_TRACE("batch size 1");
|
|
|
|
testDarknetModel(config_file, weights_file, ref.rowRange(0, N0), scoreDiff, iouDiff);
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_OPENCL)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
else if (target == DNN_TARGET_OPENCL_FP16 && INF_ENGINE_VER_MAJOR_LE(202010000))
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
else if (target == DNN_TARGET_MYRIAD &&
|
|
|
|
getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
{
|
|
|
|
SCOPED_TRACE("batch size 2");
|
|
|
|
testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Darknet_nets, YOLOv4)
|
|
|
|
{
|
|
|
|
applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB));
|
|
|
|
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
if (target == DNN_TARGET_MYRIAD) // NC_OUT_OF_MEMORY
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// batchId, classId, confidence, left, top, right, bottom
|
|
|
|
const int N0 = 3;
|
|
|
|
const int N1 = 7;
|
|
|
|
static const float ref_[/* (N0 + N1) * 7 */] = {
|
|
|
|
0, 16, 0.992194f, 0.172375f, 0.402458f, 0.403918f, 0.932801f,
|
|
|
|
0, 1, 0.988326f, 0.166708f, 0.228236f, 0.737208f, 0.735803f,
|
|
|
|
0, 7, 0.94639f, 0.602523f, 0.130399f, 0.901623f, 0.298452f,
|
|
|
|
|
|
|
|
1, 2, 0.99761f, 0.646556f, 0.45985f, 0.816041f, 0.659067f,
|
|
|
|
1, 0, 0.988913f, 0.201726f, 0.360282f, 0.266181f, 0.631728f,
|
|
|
|
1, 2, 0.98233f, 0.452007f, 0.462217f, 0.495612f, 0.521687f,
|
|
|
|
1, 9, 0.919195f, 0.374642f, 0.316524f, 0.398126f, 0.393714f,
|
|
|
|
1, 9, 0.856303f, 0.666842f, 0.372215f, 0.685539f, 0.44141f,
|
|
|
|
1, 9, 0.313516f, 0.656791f, 0.374734f, 0.671959f, 0.438371f,
|
|
|
|
1, 9, 0.256625f, 0.940232f, 0.326931f, 0.967586f, 0.374002f,
|
|
|
|
};
|
|
|
|
Mat ref(N0 + N1, 7, CV_32FC1, (void*)ref_);
|
|
|
|
|
|
|
|
double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.006 : 8e-5;
|
|
|
|
double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.042 : 3e-4;
|
|
|
|
if (target == DNN_TARGET_CUDA_FP16)
|
|
|
|
{
|
|
|
|
scoreDiff = 0.008;
|
|
|
|
iouDiff = 0.03;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string config_file = "yolov4.cfg";
|
|
|
|
std::string weights_file = "yolov4.weights";
|
|
|
|
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD &&
|
|
|
|
getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
|
|
{
|
|
|
|
scoreDiff = 0.04;
|
|
|
|
iouDiff = 0.2;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
{
|
|
|
|
SCOPED_TRACE("batch size 1");
|
|
|
|
testDarknetModel(config_file, weights_file, ref.rowRange(0, N0), scoreDiff, iouDiff);
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
SCOPED_TRACE("batch size 2");
|
|
|
|
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_OPENCL)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
else if (target == DNN_TARGET_OPENCL_FP16 && INF_ENGINE_VER_MAJOR_LE(202010000))
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
else if (target == DNN_TARGET_MYRIAD &&
|
|
|
|
getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Darknet_nets, YOLOv4_tiny)
|
|
|
|
{
|
|
|
|
applyTestTag(
|
|
|
|
target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB
|
|
|
|
);
|
|
|
|
|
|
|
|
const double confThreshold = 0.5;
|
|
|
|
// batchId, classId, confidence, left, top, right, bottom
|
|
|
|
const int N0 = 2;
|
|
|
|
const int N1 = 3;
|
|
|
|
static const float ref_[/* (N0 + N1) * 7 */] = {
|
|
|
|
0, 7, 0.85935f, 0.593484f, 0.141211f, 0.920356f, 0.291593f,
|
|
|
|
0, 16, 0.795188f, 0.169207f, 0.386886f, 0.423753f, 0.933004f,
|
|
|
|
|
|
|
|
1, 2, 0.996832f, 0.653802f, 0.464573f, 0.815193f, 0.653292f,
|
|
|
|
1, 2, 0.963325f, 0.451151f, 0.458915f, 0.496255f, 0.52241f,
|
|
|
|
1, 0, 0.926244f, 0.194851f, 0.361743f, 0.260277f, 0.632364f,
|
|
|
|
};
|
|
|
|
Mat ref(N0 + N1, 7, CV_32FC1, (void*)ref_);
|
|
|
|
|
|
|
|
double scoreDiff = 0.01f;
|
|
|
|
double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.15 : 0.01f;
|
|
|
|
|
|
|
|
std::string config_file = "yolov4-tiny.cfg";
|
|
|
|
std::string weights_file = "yolov4-tiny.weights";
|
|
|
|
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
if (target == DNN_TARGET_MYRIAD) // bad accuracy
|
|
|
|
iouDiff = std::numeric_limits<double>::quiet_NaN();
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL)
|
|
|
|
iouDiff = std::numeric_limits<double>::quiet_NaN();
|
|
|
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
iouDiff = std::numeric_limits<double>::quiet_NaN();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
{
|
|
|
|
SCOPED_TRACE("batch size 1");
|
|
|
|
testDarknetModel(config_file, weights_file, ref.rowRange(0, N0), scoreDiff, iouDiff, confThreshold);
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
SCOPED_TRACE("batch size 2");
|
|
|
|
testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff, confThreshold);
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
if (target == DNN_TARGET_MYRIAD) // bad accuracy
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Darknet_nets, dnnBackendsAndTargets());
|
|
|
|
|
|
|
|
TEST_P(Test_Darknet_layers, shortcut)
|
|
|
|
{
|
|
|
|
testDarknetLayer("shortcut");
|
|
|
|
testDarknetLayer("shortcut_leaky");
|
|
|
|
testDarknetLayer("shortcut_unequal");
|
|
|
|
testDarknetLayer("shortcut_unequal_2");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Darknet_layers, upsample)
|
|
|
|
{
|
|
|
|
testDarknetLayer("upsample");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Darknet_layers, mish)
|
|
|
|
{
|
|
|
|
testDarknetLayer("mish", true);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Darknet_layers, avgpool_softmax)
|
|
|
|
{
|
|
|
|
testDarknetLayer("avgpool_softmax");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Darknet_layers, region)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && INF_ENGINE_VER_MAJOR_GE(2020020000))
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
testDarknetLayer("region");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Darknet_layers, reorg)
|
|
|
|
{
|
|
|
|
testDarknetLayer("reorg");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Darknet_layers, route)
|
|
|
|
{
|
|
|
|
testDarknetLayer("route");
|
|
|
|
testDarknetLayer("route_multi");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Darknet_layers, maxpool)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
testDarknetLayer("maxpool");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Darknet_layers, convolutional)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
|
|
{
|
|
|
|
default_l1 = 0.01f;
|
|
|
|
}
|
|
|
|
testDarknetLayer("convolutional", true);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Darknet_layers, scale_channels)
|
|
|
|
{
|
|
|
|
bool testBatches = backend == DNN_BACKEND_CUDA;
|
|
|
|
testDarknetLayer("scale_channels", false, testBatches);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Darknet_layers, connected)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
|
|
testDarknetLayer("connected", true);
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Darknet_layers, dnnBackendsAndTargets());
|
|
|
|
|
|
|
|
}} // namespace
|