mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
208 lines
8.8 KiB
208 lines
8.8 KiB
3 years ago
|
from types import SimpleNamespace
|
||
|
|
||
|
from .image_handler import ImageHandler
|
||
|
from .feature_detector import FeatureDetector
|
||
|
from .feature_matcher import FeatureMatcher
|
||
|
from .subsetter import Subsetter
|
||
|
from .camera_estimator import CameraEstimator
|
||
|
from .camera_adjuster import CameraAdjuster
|
||
|
from .camera_wave_corrector import WaveCorrector
|
||
|
from .warper import Warper
|
||
|
from .panorama_estimation import estimate_final_panorama_dimensions
|
||
|
from .exposure_error_compensator import ExposureErrorCompensator
|
||
|
from .seam_finder import SeamFinder
|
||
|
from .blender import Blender
|
||
|
from .timelapser import Timelapser
|
||
|
from .stitching_error import StitchingError
|
||
|
|
||
|
|
||
|
class Stitcher:
|
||
|
DEFAULT_SETTINGS = {
|
||
|
"medium_megapix": ImageHandler.DEFAULT_MEDIUM_MEGAPIX,
|
||
|
"detector": FeatureDetector.DEFAULT_DETECTOR,
|
||
|
"nfeatures": 500,
|
||
|
"matcher_type": FeatureMatcher.DEFAULT_MATCHER,
|
||
|
"range_width": FeatureMatcher.DEFAULT_RANGE_WIDTH,
|
||
|
"try_use_gpu": False,
|
||
|
"match_conf": None,
|
||
|
"confidence_threshold": Subsetter.DEFAULT_CONFIDENCE_THRESHOLD,
|
||
|
"matches_graph_dot_file": Subsetter.DEFAULT_MATCHES_GRAPH_DOT_FILE,
|
||
|
"estimator": CameraEstimator.DEFAULT_CAMERA_ESTIMATOR,
|
||
|
"adjuster": CameraAdjuster.DEFAULT_CAMERA_ADJUSTER,
|
||
|
"refinement_mask": CameraAdjuster.DEFAULT_REFINEMENT_MASK,
|
||
|
"wave_correct_kind": WaveCorrector.DEFAULT_WAVE_CORRECTION,
|
||
|
"warper_type": Warper.DEFAULT_WARP_TYPE,
|
||
|
"low_megapix": ImageHandler.DEFAULT_LOW_MEGAPIX,
|
||
|
"compensator": ExposureErrorCompensator.DEFAULT_COMPENSATOR,
|
||
|
"nr_feeds": ExposureErrorCompensator.DEFAULT_NR_FEEDS,
|
||
|
"block_size": ExposureErrorCompensator.DEFAULT_BLOCK_SIZE,
|
||
|
"finder": SeamFinder.DEFAULT_SEAM_FINDER,
|
||
|
"final_megapix": ImageHandler.DEFAULT_FINAL_MEGAPIX,
|
||
|
"blender_type": Blender.DEFAULT_BLENDER,
|
||
|
"blend_strength": Blender.DEFAULT_BLEND_STRENGTH,
|
||
|
"timelapse": Timelapser.DEFAULT_TIMELAPSE}
|
||
|
|
||
|
def __init__(self, **kwargs):
|
||
|
self.initialize_stitcher(**kwargs)
|
||
|
|
||
|
def initialize_stitcher(self, **kwargs):
|
||
|
self.settings = Stitcher.DEFAULT_SETTINGS.copy()
|
||
|
self.validate_kwargs(kwargs)
|
||
|
self.settings.update(kwargs)
|
||
|
|
||
|
args = SimpleNamespace(**self.settings)
|
||
|
self.img_handler = ImageHandler(args.medium_megapix,
|
||
|
args.low_megapix,
|
||
|
args.final_megapix)
|
||
|
self.detector = \
|
||
|
FeatureDetector(args.detector, nfeatures=args.nfeatures)
|
||
|
match_conf = \
|
||
|
FeatureMatcher.get_match_conf(args.match_conf, args.detector)
|
||
|
self.matcher = FeatureMatcher(args.matcher_type, args.range_width,
|
||
|
try_use_gpu=args.try_use_gpu,
|
||
|
match_conf=match_conf)
|
||
|
self.subsetter = \
|
||
|
Subsetter(args.confidence_threshold, args.matches_graph_dot_file)
|
||
|
self.camera_estimator = CameraEstimator(args.estimator)
|
||
|
self.camera_adjuster = \
|
||
|
CameraAdjuster(args.adjuster, args.refinement_mask)
|
||
|
self.wave_corrector = WaveCorrector(args.wave_correct_kind)
|
||
|
self.warper = Warper(args.warper_type)
|
||
|
self.compensator = \
|
||
|
ExposureErrorCompensator(args.compensator, args.nr_feeds,
|
||
|
args.block_size)
|
||
|
self.seam_finder = SeamFinder(args.finder)
|
||
|
self.blender = Blender(args.blender_type, args.blend_strength)
|
||
|
self.timelapser = Timelapser(args.timelapse)
|
||
|
|
||
|
def stitch(self, img_names):
|
||
|
self.initialize_registration(img_names)
|
||
|
|
||
|
imgs = self.resize_medium_resolution()
|
||
|
features = self.find_features(imgs)
|
||
|
matches = self.match_features(features)
|
||
|
imgs, features, matches = self.subset(imgs, features, matches)
|
||
|
cameras = self.estimate_camera_parameters(features, matches)
|
||
|
cameras = self.refine_camera_parameters(features, matches, cameras)
|
||
|
cameras = self.perform_wave_correction(cameras)
|
||
|
panorama_scale, panorama_corners, panorama_sizes = \
|
||
|
self.estimate_final_panorama_dimensions(cameras)
|
||
|
|
||
|
self.initialize_composition(panorama_corners, panorama_sizes)
|
||
|
|
||
|
imgs = self.resize_low_resolution(imgs)
|
||
|
imgs = self.warp_low_resolution_images(imgs, cameras, panorama_scale)
|
||
|
self.estimate_exposure_errors(imgs)
|
||
|
seam_masks = self.find_seam_masks(imgs)
|
||
|
|
||
|
imgs = self.resize_final_resolution()
|
||
|
imgs = self.warp_final_resolution_images(imgs, cameras, panorama_scale)
|
||
|
imgs = self.compensate_exposure_errors(imgs)
|
||
|
seam_masks = self.resize_seam_masks(seam_masks)
|
||
|
self.blend_images(imgs, seam_masks)
|
||
|
|
||
|
return self.create_final_panorama()
|
||
|
|
||
|
def initialize_registration(self, img_names):
|
||
|
self.img_handler.set_img_names(img_names)
|
||
|
|
||
|
def resize_medium_resolution(self):
|
||
|
return list(self.img_handler.resize_to_medium_resolution())
|
||
|
|
||
|
def find_features(self, imgs):
|
||
|
return [self.detector.detect_features(img) for img in imgs]
|
||
|
|
||
|
def match_features(self, features):
|
||
|
return self.matcher.match_features(features)
|
||
|
|
||
|
def subset(self, imgs, features, matches):
|
||
|
names, sizes, imgs, features, matches = \
|
||
|
self.subsetter.subset(self.img_handler.img_names,
|
||
|
self.img_handler.img_sizes,
|
||
|
imgs, features, matches)
|
||
|
self.img_handler.img_names, self.img_handler.img_sizes = names, sizes
|
||
|
return imgs, features, matches
|
||
|
|
||
|
def estimate_camera_parameters(self, features, matches):
|
||
|
return self.camera_estimator.estimate(features, matches)
|
||
|
|
||
|
def refine_camera_parameters(self, features, matches, cameras):
|
||
|
return self.camera_adjuster.adjust(features, matches, cameras)
|
||
|
|
||
|
def perform_wave_correction(self, cameras):
|
||
|
return self.wave_corrector.correct(cameras)
|
||
|
|
||
|
def estimate_final_panorama_dimensions(self, cameras):
|
||
|
return estimate_final_panorama_dimensions(cameras, self.warper,
|
||
|
self.img_handler)
|
||
|
|
||
|
def initialize_composition(self, corners, sizes):
|
||
|
if self.timelapser.do_timelapse:
|
||
|
self.timelapser.initialize(corners, sizes)
|
||
|
else:
|
||
|
self.blender.prepare(corners, sizes)
|
||
|
|
||
|
def resize_low_resolution(self, imgs=None):
|
||
|
return list(self.img_handler.resize_to_low_resolution(imgs))
|
||
|
|
||
|
def warp_low_resolution_images(self, imgs, cameras, final_scale):
|
||
|
camera_aspect = self.img_handler.get_medium_to_low_ratio()
|
||
|
scale = final_scale * self.img_handler.get_final_to_low_ratio()
|
||
|
return list(self.warp_images(imgs, cameras, scale, camera_aspect))
|
||
|
|
||
|
def warp_final_resolution_images(self, imgs, cameras, scale):
|
||
|
camera_aspect = self.img_handler.get_medium_to_final_ratio()
|
||
|
return self.warp_images(imgs, cameras, scale, camera_aspect)
|
||
|
|
||
|
def warp_images(self, imgs, cameras, scale, aspect=1):
|
||
|
self._masks = []
|
||
|
self._corners = []
|
||
|
for img_warped, mask_warped, corner in \
|
||
|
self.warper.warp_images_and_image_masks(
|
||
|
imgs, cameras, scale, aspect
|
||
|
):
|
||
|
self._masks.append(mask_warped)
|
||
|
self._corners.append(corner)
|
||
|
yield img_warped
|
||
|
|
||
|
def estimate_exposure_errors(self, imgs):
|
||
|
self.compensator.feed(self._corners, imgs, self._masks)
|
||
|
|
||
|
def find_seam_masks(self, imgs):
|
||
|
return self.seam_finder.find(imgs, self._corners, self._masks)
|
||
|
|
||
|
def resize_final_resolution(self):
|
||
|
return self.img_handler.resize_to_final_resolution()
|
||
|
|
||
|
def compensate_exposure_errors(self, imgs):
|
||
|
for idx, img in enumerate(imgs):
|
||
|
yield self.compensator.apply(idx, self._corners[idx],
|
||
|
img, self._masks[idx])
|
||
|
|
||
|
def resize_seam_masks(self, seam_masks):
|
||
|
for idx, seam_mask in enumerate(seam_masks):
|
||
|
yield SeamFinder.resize(seam_mask, self._masks[idx])
|
||
|
|
||
|
def blend_images(self, imgs, masks):
|
||
|
for idx, (img, mask) in enumerate(zip(imgs, masks)):
|
||
|
if self.timelapser.do_timelapse:
|
||
|
self.timelapser.process_and_save_frame(
|
||
|
self.img_handler.img_names[idx], img, self._corners[idx]
|
||
|
)
|
||
|
else:
|
||
|
self.blender.feed(img, mask, self._corners[idx])
|
||
|
|
||
|
def create_final_panorama(self):
|
||
|
if not self.timelapser.do_timelapse:
|
||
|
return self.blender.blend()
|
||
|
|
||
|
@staticmethod
|
||
|
def validate_kwargs(kwargs):
|
||
|
for arg in kwargs:
|
||
|
if arg not in Stitcher.DEFAULT_SETTINGS:
|
||
|
raise StitchingError("Invalid Argument: " + arg)
|
||
|
|
||
|
def collect_garbage(self):
|
||
|
del self.img_handler.img_names, self.img_handler.img_sizes,
|
||
|
del self._corners, self._masks
|