|
|
|
#+TITLE: OpenCV 4.4 Graph API
|
|
|
|
#+AUTHOR: Dmitry Matveev\newline Intel Corporation
|
|
|
|
#+OPTIONS: H:2 toc:t num:t
|
|
|
|
#+LATEX_CLASS: beamer
|
|
|
|
#+LATEX_CLASS_OPTIONS: [presentation]
|
|
|
|
#+LATEX_HEADER: \usepackage{transparent} \usepackage{listings} \usepackage{pgfplots} \usepackage{mtheme.sty/beamerthememetropolis}
|
|
|
|
#+LATEX_HEADER: \setbeamertemplate{frame footer}{OpenCV 4.4 G-API: Overview and programming by example}
|
|
|
|
#+BEAMER_HEADER: \subtitle{Overview and programming by example}
|
|
|
|
#+BEAMER_HEADER: \titlegraphic{ \vspace*{3cm}\hspace*{5cm} {\transparent{0.2}\includegraphics[height=\textheight]{ocv_logo.eps}}}
|
|
|
|
#+COLUMNS: %45ITEM %10BEAMER_ENV(Env) %10BEAMER_ACT(Act) %4BEAMER_COL(Col) %8BEAMER_OPT(Opt)
|
|
|
|
|
|
|
|
* G-API: What is, why, what's for?
|
|
|
|
|
|
|
|
** OpenCV evolution in one slide
|
|
|
|
|
|
|
|
*** Version 1.x -- Library inception
|
|
|
|
|
|
|
|
- Just a set of CV functions + helpers around (visualization, IO);
|
|
|
|
|
|
|
|
*** Version 2.x -- Library rewrite
|
|
|
|
|
|
|
|
- OpenCV meets C++, ~cv::Mat~ replaces ~IplImage*~;
|
|
|
|
|
|
|
|
*** Version 3.0 -- Welcome Transparent API (T-API)
|
|
|
|
|
|
|
|
- ~cv::UMat~ is introduced as a /transparent/ addition to
|
|
|
|
~cv::Mat~;
|
|
|
|
- With ~cv::UMat~, an OpenCL kernel can be enqeueud instead of
|
|
|
|
immediately running C code;
|
|
|
|
- ~cv::UMat~ data is kept on a /device/ until explicitly queried.
|
|
|
|
|
|
|
|
** OpenCV evolution in one slide (cont'd)
|
|
|
|
# FIXME: Learn proper page-breaking!
|
|
|
|
|
|
|
|
*** Version 4.0 -- Welcome Graph API (G-API)
|
|
|
|
|
|
|
|
- A new separate module (not a full library rewrite);
|
|
|
|
- A framework (or even a /meta/-framework);
|
|
|
|
- Usage model:
|
|
|
|
- /Express/ an image/vision processing graph and then /execute/ it;
|
|
|
|
- Fine-tune execution without changes in the graph;
|
|
|
|
- Similar to Halide -- separates logic from
|
|
|
|
platform details.
|
|
|
|
- More than Halide:
|
|
|
|
- Kernels can be written in unconstrained platform-native code;
|
|
|
|
- Halide can serve as a backend (one of many).
|
|
|
|
|
|
|
|
** OpenCV evolution in one slide (cont'd)
|
|
|
|
# FIXME: Learn proper page-breaking!
|
|
|
|
|
|
|
|
*** Version 4.2 -- New horizons
|
|
|
|
|
|
|
|
- Introduced in-graph inference via OpenVINO™ Toolkit;
|
|
|
|
- Introduced video-oriented Streaming execution mode;
|
|
|
|
- Extended focus from individual image processing to the full
|
|
|
|
application pipeline optimization.
|
|
|
|
|
|
|
|
*** Version 4.4 -- More on video
|
|
|
|
|
|
|
|
- Introduced a notion of stateful kernels;
|
|
|
|
- The road to object tracking, background subtraction, etc. in the
|
|
|
|
graph;
|
|
|
|
- Added more video-oriented operations (feature detection, Optical
|
|
|
|
flow).
|
|
|
|
|
|
|
|
** Why G-API?
|
|
|
|
|
|
|
|
*** Why introduce a new execution model?
|
|
|
|
|
|
|
|
- Ultimately it is all about optimizations;
|
|
|
|
- or at least about a /possibility/ to optimize;
|
|
|
|
- A CV algorithm is usually not a single function call, but a
|
|
|
|
composition of functions;
|
|
|
|
- Different models operate at different levels of knowledge on the
|
|
|
|
algorithm (problem) we run.
|
|
|
|
|
|
|
|
** Why G-API? (cont'd)
|
|
|
|
# FIXME: Learn proper page-breaking!
|
|
|
|
|
|
|
|
*** Why introduce a new execution model?
|
|
|
|
|
|
|
|
- *Traditional* -- every function can be optimized (e.g. vectorized)
|
|
|
|
and parallelized, the rest is up to programmer to care about.
|
|
|
|
- *Queue-based* -- kernels are enqueued dynamically with no guarantee
|
|
|
|
where the end is or what is called next;
|
|
|
|
- *Graph-based* -- nearly all information is there, some compiler
|
|
|
|
magic can be done!
|
|
|
|
|
|
|
|
** What is G-API for?
|
|
|
|
|
|
|
|
*** Bring the value of graph model with OpenCV where it makes sense:
|
|
|
|
|
|
|
|
- *Memory consumption* can be reduced dramatically;
|
|
|
|
- *Memory access* can be optimized to maximize cache reuse;
|
|
|
|
- *Parallelism* can be applied automatically where it is hard to do
|
|
|
|
it manually;
|
|
|
|
- It also becomes more efficient when working with graphs;
|
|
|
|
- *Heterogeneity* gets extra benefits like:
|
|
|
|
- Avoiding unnecessary data transfers;
|
|
|
|
- Shadowing transfer costs with parallel host co-execution;
|
|
|
|
- Improving system throughput with frame-level pipelining.
|
|
|
|
|
|
|
|
* Programming with G-API
|
|
|
|
|
|
|
|
** G-API Basics
|
|
|
|
|
|
|
|
*** G-API Concepts
|
|
|
|
|
|
|
|
- *Graphs* are built by applying /operations/ to /data objects/;
|
|
|
|
- API itself has no "graphs", it is expression-based instead;
|
|
|
|
- *Data objects* do not hold actual data, only capture /dependencies/;
|
|
|
|
- *Operations* consume and produce data objects.
|
|
|
|
- A graph is defined by specifying its /boundaries/ with data objects:
|
|
|
|
- What data objects are /inputs/ to the graph?
|
|
|
|
- What are its /outputs/?
|
|
|
|
|
|
|
|
** The code is worth a thousand words
|
|
|
|
:PROPERTIES:
|
|
|
|
:BEAMER_opt: shrink=42
|
|
|
|
:END:
|
|
|
|
|
|
|
|
#+BEGIN_SRC C++
|
|
|
|
#include <opencv2/gapi.hpp> // G-API framework header
|
|
|
|
#include <opencv2/gapi/imgproc.hpp> // cv::gapi::blur()
|
|
|
|
#include <opencv2/highgui.hpp> // cv::imread/imwrite
|
|
|
|
|
|
|
|
int main(int argc, char *argv[]) {
|
|
|
|
if (argc < 3) return 1;
|
|
|
|
|
|
|
|
cv::GMat in; // Express the graph:
|
|
|
|
cv::GMat out = cv::gapi::blur(in, cv::Size(3,3)); // `out` is a result of `blur` of `in`
|
|
|
|
|
|
|
|
cv::Mat in_mat = cv::imread(argv[1]); // Get the real data
|
|
|
|
cv::Mat out_mat; // Output buffer (may be empty)
|
|
|
|
|
|
|
|
cv::GComputation(cv::GIn(in), cv::GOut(out)) // Declare a graph from `in` to `out`
|
|
|
|
.apply(cv::gin(in_mat), cv::gout(out_mat)); // ...and run it immediately
|
|
|
|
|
|
|
|
cv::imwrite(argv[2], out_mat); // Save the result
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#+END_SRC
|
|
|
|
|
|
|
|
** The code is worth a thousand words
|
|
|
|
:PROPERTIES:
|
|
|
|
:BEAMER_opt: shrink=42
|
|
|
|
:END:
|
|
|
|
|
|
|
|
*** Traditional OpenCV :B_block:BMCOL:
|
|
|
|
:PROPERTIES:
|
|
|
|
:BEAMER_env: block
|
|
|
|
:BEAMER_col: 0.45
|
|
|
|
:END:
|
|
|
|
#+BEGIN_SRC C++
|
|
|
|
#include <opencv2/core.hpp>
|
|
|
|
#include <opencv2/imgproc.hpp>
|
|
|
|
|
|
|
|
#include <opencv2/highgui.hpp>
|
|
|
|
|
|
|
|
int main(int argc, char *argv[]) {
|
|
|
|
using namespace cv;
|
|
|
|
if (argc != 3) return 1;
|
|
|
|
|
|
|
|
Mat in_mat = imread(argv[1]);
|
|
|
|
Mat gx, gy;
|
|
|
|
|
|
|
|
Sobel(in_mat, gx, CV_32F, 1, 0);
|
|
|
|
Sobel(in_mat, gy, CV_32F, 0, 1);
|
|
|
|
|
|
|
|
Mat mag, out_mat;
|
|
|
|
sqrt(gx.mul(gx) + gy.mul(gy), mag);
|
|
|
|
mag.convertTo(out_mat, CV_8U);
|
|
|
|
|
|
|
|
imwrite(argv[2], out_mat);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#+END_SRC
|
|
|
|
|
|
|
|
*** OpenCV G-API :B_block:BMCOL:
|
|
|
|
:PROPERTIES:
|
|
|
|
:BEAMER_env: block
|
|
|
|
:BEAMER_col: 0.5
|
|
|
|
:END:
|
|
|
|
#+BEGIN_SRC C++
|
|
|
|
#include <opencv2/gapi.hpp>
|
|
|
|
#include <opencv2/gapi/core.hpp>
|
|
|
|
#include <opencv2/gapi/imgproc.hpp>
|
|
|
|
#include <opencv2/highgui.hpp>
|
|
|
|
|
|
|
|
int main(int argc, char *argv[]) {
|
|
|
|
using namespace cv;
|
|
|
|
if (argc != 3) return 1;
|
|
|
|
|
|
|
|
GMat in;
|
|
|
|
GMat gx = gapi::Sobel(in, CV_32F, 1, 0);
|
|
|
|
GMat gy = gapi::Sobel(in, CV_32F, 0, 1);
|
|
|
|
GMat mag = gapi::sqrt( gapi::mul(gx, gx)
|
|
|
|
+ gapi::mul(gy, gy));
|
|
|
|
GMat out = gapi::convertTo(mag, CV_8U);
|
|
|
|
GComputation sobel(GIn(in), GOut(out));
|
|
|
|
|
|
|
|
Mat in_mat = imread(argv[1]), out_mat;
|
|
|
|
sobel.apply(in_mat, out_mat);
|
|
|
|
imwrite(argv[2], out_mat);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#+END_SRC
|
|
|
|
|
|
|
|
** The code is worth a thousand words (cont'd)
|
|
|
|
# FIXME: sections!!!
|
|
|
|
|
|
|
|
*** What we have just learned?
|
|
|
|
|
|
|
|
- G-API functions mimic their traditional OpenCV ancestors;
|
|
|
|
- No real data is required to construct a graph;
|
|
|
|
- Graph construction and graph execution are separate steps.
|
|
|
|
|
|
|
|
*** What else?
|
|
|
|
|
|
|
|
- Graph is first /expressed/ and then /captured/ in an object;
|
|
|
|
- Graph constructor defines /protocol/; user can pass vectors of
|
|
|
|
inputs/outputs like
|
|
|
|
#+BEGIN_SRC C++
|
|
|
|
cv::GComputation(cv::GIn(...), cv::GOut(...))
|
|
|
|
#+END_SRC
|
|
|
|
- Calls to ~.apply()~ must conform to graph's protocol
|
|
|
|
|
|
|
|
** On data objects
|
|
|
|
|
|
|
|
Graph *protocol* defines what arguments a computation was defined on
|
|
|
|
(both inputs and outputs), and what are the *shapes* (or types) of
|
|
|
|
those arguments:
|
|
|
|
|
|
|
|
| *Shape* | *Argument* | Size |
|
|
|
|
|--------------+------------------+-----------------------------|
|
|
|
|
| ~GMat~ | ~Mat~ | Static; defined during |
|
|
|
|
| | | graph compilation |
|
|
|
|
|--------------+------------------+-----------------------------|
|
|
|
|
| ~GScalar~ | ~Scalar~ | 4 x ~double~ |
|
|
|
|
|--------------+------------------+-----------------------------|
|
|
|
|
| ~GArray<T>~ | ~std::vector<T>~ | Dynamic; defined in runtime |
|
|
|
|
|--------------+------------------+-----------------------------|
|
|
|
|
| ~GOpaque<T>~ | ~T~ | Static, ~sizeof(T)~ |
|
|
|
|
|
|
|
|
~GScalar~ may be value-initialized at construction time to allow
|
|
|
|
expressions like ~GMat a = 2*(b + 1)~.
|
|
|
|
|
|
|
|
** On operations and kernels
|
|
|
|
:PROPERTIES:
|
|
|
|
:BEAMER_opt: shrink=22
|
|
|
|
:END:
|
|
|
|
|
|
|
|
*** :B_block:BMCOL:
|
|
|
|
:PROPERTIES:
|
|
|
|
:BEAMER_env: block
|
|
|
|
:BEAMER_col: 0.45
|
|
|
|
:END:
|
|
|
|
|
|
|
|
- Graphs are built with *Operations* over virtual *Data*;
|
|
|
|
- *Operations* define interfaces (literally);
|
|
|
|
- *Kernels* are implementations to *Operations* (like in OOP);
|
|
|
|
- An *Operation* is platform-agnostic, a *kernel* is not;
|
|
|
|
- *Kernels* are implemented for *Backends*, the latter provide
|
|
|
|
APIs to write kernels;
|
|
|
|
- Users can /add/ their *own* operations and kernels,
|
|
|
|
and also /redefine/ "standard" kernels their *own* way.
|
|
|
|
|
|
|
|
*** :B_block:BMCOL:
|
|
|
|
:PROPERTIES:
|
|
|
|
:BEAMER_env: block
|
|
|
|
:BEAMER_col: 0.45
|
|
|
|
:END:
|
|
|
|
|
|
|
|
#+BEGIN_SRC dot :file "000-ops-kernels.eps" :cmdline "-Kdot -Teps"
|
|
|
|
digraph G {
|
|
|
|
node [shape=box];
|
|
|
|
rankdir=BT;
|
|
|
|
|
|
|
|
Gr [label="Graph"];
|
|
|
|
Op [label="Operation\nA"];
|
|
|
|
{rank=same
|
|
|
|
Impl1 [label="Kernel\nA:2"];
|
|
|
|
Impl2 [label="Kernel\nA:1"];
|
|
|
|
}
|
|
|
|
|
|
|
|
Op -> Gr [dir=back, label="'consists of'"];
|
|
|
|
Impl1 -> Op [];
|
|
|
|
Impl2 -> Op [label="'is implemented by'"];
|
|
|
|
|
|
|
|
node [shape=note,style=dashed];
|
|
|
|
{rank=same
|
|
|
|
Op;
|
|
|
|
CommentOp [label="Abstract:\ndeclared via\nG_API_OP()"];
|
|
|
|
}
|
|
|
|
{rank=same
|
|
|
|
Comment1 [label="Platform:\ndefined with\nOpenCL backend"];
|
|
|
|
Comment2 [label="Platform:\ndefined with\nOpenCV backend"];
|
|
|
|
}
|
|
|
|
|
|
|
|
CommentOp -> Op [constraint=false, style=dashed, arrowhead=none];
|
|
|
|
Comment1 -> Impl1 [style=dashed, arrowhead=none];
|
|
|
|
Comment2 -> Impl2 [style=dashed, arrowhead=none];
|
|
|
|
}
|
|
|
|
#+END_SRC
|
|
|
|
|
|
|
|
** On operations and kernels (cont'd)
|
|
|
|
|
|
|
|
*** Defining an operation
|
|
|
|
|
|
|
|
- A type name (every operation is a C++ type);
|
|
|
|
- Operation signature (similar to ~std::function<>~);
|
|
|
|
- Operation identifier (a string);
|
|
|
|
- Metadata callback -- describe what is the output value format(s),
|
|
|
|
given the input and arguments.
|
|
|
|
- Use ~OpType::on(...)~ to use a new kernel ~OpType~ to construct graphs.
|
|
|
|
|
|
|
|
#+LaTeX: {\footnotesize
|
|
|
|
#+BEGIN_SRC C++
|
|
|
|
G_API_OP(GSqrt,<GMat(GMat)>,"org.opencv.core.math.sqrt") {
|
|
|
|
static GMatDesc outMeta(GMatDesc in) { return in; }
|
|
|
|
};
|
|
|
|
#+END_SRC
|
|
|
|
#+LaTeX: }
|
|
|
|
|
|
|
|
** On operations and kernels (cont'd)
|
|
|
|
|
|
|
|
*** ~GSqrt~ vs. ~cv::gapi::sqrt()~
|
|
|
|
|
|
|
|
- How a *type* relates to a *functions* from the example?
|
|
|
|
- These functions are just wrappers over ~::on~:
|
|
|
|
#+LaTeX: {\scriptsize
|
|
|
|
#+BEGIN_SRC C++
|
|
|
|
G_API_OP(GSqrt,<GMat(GMat)>,"org.opencv.core.math.sqrt") {
|
|
|
|
static GMatDesc outMeta(GMatDesc in) { return in; }
|
|
|
|
};
|
|
|
|
GMat gapi::sqrt(const GMat& src) { return GSqrt::on(src); }
|
|
|
|
#+END_SRC
|
|
|
|
#+LaTeX: }
|
|
|
|
- Why -- Doxygen, default parameters, 1:n mapping:
|
|
|
|
#+LaTeX: {\scriptsize
|
|
|
|
#+BEGIN_SRC C++
|
|
|
|
cv::GMat custom::unsharpMask(const cv::GMat &src,
|
|
|
|
const int sigma,
|
|
|
|
const float strength) {
|
|
|
|
cv::GMat blurred = cv::gapi::medianBlur(src, sigma);
|
|
|
|
cv::GMat laplacian = cv::gapi::Laplacian(blurred, CV_8U);
|
|
|
|
return (src - (laplacian * strength));
|
|
|
|
}
|
|
|
|
#+END_SRC
|
|
|
|
#+LaTeX: }
|
|
|
|
|
|
|
|
** On operations and kernels (cont'd)
|
|
|
|
|
|
|
|
*** Implementing an operation
|
|
|
|
|
|
|
|
- Depends on the backend and its API;
|
|
|
|
- Common part for all backends: refer to operation being implemented
|
|
|
|
using its /type/.
|
|
|
|
|
|
|
|
*** OpenCV backend
|
|
|
|
- OpenCV backend is the default one: OpenCV kernel is a wrapped OpenCV
|
|
|
|
function:
|
|
|
|
#+LaTeX: {\footnotesize
|
|
|
|
#+BEGIN_SRC C++
|
|
|
|
GAPI_OCV_KERNEL(GCPUSqrt, cv::gapi::core::GSqrt) {
|
|
|
|
static void run(const cv::Mat& in, cv::Mat &out) {
|
|
|
|
cv::sqrt(in, out);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
#+END_SRC
|
|
|
|
#+LaTeX: }
|
|
|
|
|
|
|
|
** Operations and Kernels (cont'd)
|
|
|
|
# FIXME!!!
|
|
|
|
|
|
|
|
*** Fluid backend
|
|
|
|
|
|
|
|
- Fluid backend operates with row-by-row kernels and schedules its
|
|
|
|
execution to optimize data locality:
|
|
|
|
#+LaTeX: {\footnotesize
|
|
|
|
#+BEGIN_SRC C++
|
|
|
|
GAPI_FLUID_KERNEL(GFluidSqrt, cv::gapi::core::GSqrt, false) {
|
|
|
|
static const int Window = 1;
|
|
|
|
static void run(const View &in, Buffer &out) {
|
|
|
|
hal::sqrt32f(in .InLine <float>(0)
|
|
|
|
out.OutLine<float>(0),
|
|
|
|
out.length());
|
|
|
|
}
|
|
|
|
};
|
|
|
|
#+END_SRC
|
|
|
|
#+LaTeX: }
|
|
|
|
- Note ~run~ changes signature but still is derived from the operation
|
|
|
|
signature.
|
|
|
|
|
|
|
|
** Operations and Kernels (cont'd)
|
|
|
|
|
|
|
|
*** Specifying which kernels to use
|
|
|
|
|
|
|
|
- Graph execution model is defined by kernels which are available/used;
|
|
|
|
- Kernels can be specified via the graph compilation arguments:
|
|
|
|
#+LaTeX: {\footnotesize
|
|
|
|
#+BEGIN_SRC C++
|
|
|
|
#include <opencv2/gapi/fluid/core.hpp>
|
|
|
|
#include <opencv2/gapi/fluid/imgproc.hpp>
|
|
|
|
...
|
|
|
|
auto pkg = cv::gapi::combine(cv::gapi::core::fluid::kernels(),
|
|
|
|
cv::gapi::imgproc::fluid::kernels());
|
|
|
|
sobel.apply(in_mat, out_mat, cv::compile_args(pkg));
|
|
|
|
#+END_SRC
|
|
|
|
#+LaTeX: }
|
|
|
|
- Users can combine kernels of different backends and G-API will partition
|
|
|
|
the execution among those automatically.
|
|
|
|
|
|
|
|
** Heterogeneity in G-API
|
|
|
|
:PROPERTIES:
|
|
|
|
:BEAMER_opt: shrink=35
|
|
|
|
:END:
|
|
|
|
*** Automatic subgraph partitioning in G-API
|
|
|
|
*** :B_block:BMCOL:
|
|
|
|
:PROPERTIES:
|
|
|
|
:BEAMER_env: block
|
|
|
|
:BEAMER_col: 0.18
|
|
|
|
:END:
|
|
|
|
|
|
|
|
#+BEGIN_SRC dot :file "010-hetero-init.eps" :cmdline "-Kdot -Teps"
|
|
|
|
digraph G {
|
|
|
|
rankdir=TB;
|
|
|
|
ranksep=0.3;
|
|
|
|
|
|
|
|
node [shape=box margin=0 height=0.25];
|
|
|
|
A; B; C;
|
|
|
|
|
|
|
|
node [shape=ellipse];
|
|
|
|
GMat0;
|
|
|
|
GMat1;
|
|
|
|
GMat2;
|
|
|
|
GMat3;
|
|
|
|
|
|
|
|
GMat0 -> A -> GMat1 -> B -> GMat2;
|
|
|
|
GMat2 -> C;
|
|
|
|
GMat0 -> C -> GMat3
|
|
|
|
|
|
|
|
subgraph cluster {style=invis; A; GMat1; B; GMat2; C};
|
|
|
|
}
|
|
|
|
#+END_SRC
|
|
|
|
|
|
|
|
The initial graph: operations are not resolved yet.
|
|
|
|
|
|
|
|
*** :B_block:BMCOL:
|
|
|
|
:PROPERTIES:
|
|
|
|
:BEAMER_env: block
|
|
|
|
:BEAMER_col: 0.18
|
|
|
|
:END:
|
|
|
|
|
|
|
|
#+BEGIN_SRC dot :file "011-hetero-homo.eps" :cmdline "-Kdot -Teps"
|
|
|
|
digraph G {
|
|
|
|
rankdir=TB;
|
|
|
|
ranksep=0.3;
|
|
|
|
|
|
|
|
node [shape=box margin=0 height=0.25];
|
|
|
|
A; B; C;
|
|
|
|
|
|
|
|
node [shape=ellipse];
|
|
|
|
GMat0;
|
|
|
|
GMat1;
|
|
|
|
GMat2;
|
|
|
|
GMat3;
|
|
|
|
|
|
|
|
GMat0 -> A -> GMat1 -> B -> GMat2;
|
|
|
|
GMat2 -> C;
|
|
|
|
GMat0 -> C -> GMat3
|
|
|
|
|
|
|
|
subgraph cluster {style=filled;color=azure2; A; GMat1; B; GMat2; C};
|
|
|
|
}
|
|
|
|
#+END_SRC
|
|
|
|
|
|
|
|
All operations are handled by the same backend.
|
|
|
|
|
|
|
|
*** :B_block:BMCOL:
|
|
|
|
:PROPERTIES:
|
|
|
|
:BEAMER_env: block
|
|
|
|
:BEAMER_col: 0.18
|
|
|
|
:END:
|
|
|
|
|
|
|
|
#+BEGIN_SRC dot :file "012-hetero-a.eps" :cmdline "-Kdot -Teps"
|
|
|
|
digraph G {
|
|
|
|
rankdir=TB;
|
|
|
|
ranksep=0.3;
|
|
|
|
|
|
|
|
node [shape=box margin=0 height=0.25];
|
|
|
|
A; B; C;
|
|
|
|
|
|
|
|
node [shape=ellipse];
|
|
|
|
GMat0;
|
|
|
|
GMat1;
|
|
|
|
GMat2;
|
|
|
|
GMat3;
|
|
|
|
|
|
|
|
GMat0 -> A -> GMat1 -> B -> GMat2;
|
|
|
|
GMat2 -> C;
|
|
|
|
GMat0 -> C -> GMat3
|
|
|
|
|
|
|
|
subgraph cluster_1 {style=filled;color=azure2; A; GMat1; B; }
|
|
|
|
subgraph cluster_2 {style=filled;color=ivory2; C};
|
|
|
|
}
|
|
|
|
#+END_SRC
|
|
|
|
|
|
|
|
~A~ & ~B~ are of backend ~1~, ~C~ is of backend ~2~.
|
|
|
|
|
|
|
|
*** :B_block:BMCOL:
|
|
|
|
:PROPERTIES:
|
|
|
|
:BEAMER_env: block
|
|
|
|
:BEAMER_col: 0.18
|
|
|
|
:END:
|
|
|
|
|
|
|
|
#+BEGIN_SRC dot :file "013-hetero-b.eps" :cmdline "-Kdot -Teps"
|
|
|
|
digraph G {
|
|
|
|
rankdir=TB;
|
|
|
|
ranksep=0.3;
|
|
|
|
|
|
|
|
node [shape=box margin=0 height=0.25];
|
|
|
|
A; B; C;
|
|
|
|
|
|
|
|
node [shape=ellipse];
|
|
|
|
GMat0;
|
|
|
|
GMat1;
|
|
|
|
GMat2;
|
|
|
|
GMat3;
|
|
|
|
|
|
|
|
GMat0 -> A -> GMat1 -> B -> GMat2;
|
|
|
|
GMat2 -> C;
|
|
|
|
GMat0 -> C -> GMat3
|
|
|
|
|
|
|
|
subgraph cluster_1 {style=filled;color=azure2; A};
|
|
|
|
subgraph cluster_2 {style=filled;color=ivory2; B};
|
|
|
|
subgraph cluster_3 {style=filled;color=azure2; C};
|
|
|
|
}
|
|
|
|
#+END_SRC
|
|
|
|
|
|
|
|
~A~ & ~C~ are of backend ~1~, ~B~ is of backend ~2~.
|
|
|
|
|
|
|
|
** Heterogeneity in G-API
|
|
|
|
|
|
|
|
*** Heterogeneity summary
|
|
|
|
|
|
|
|
- G-API automatically partitions its graph in subgraphs (called "islands")
|
|
|
|
based on the available kernels;
|
|
|
|
- Adjacent kernels taken from the same backend are "fused" into the same
|
|
|
|
"island";
|
|
|
|
- G-API implements a two-level execution model:
|
|
|
|
- Islands are executed at the top level by a G-API's *Executor*;
|
|
|
|
- Island internals are run at the bottom level by its *Backend*;
|
|
|
|
- G-API fully delegates the low-level execution and memory management to backends.
|
|
|
|
|
|
|
|
* Inference and Streaming
|
|
|
|
|
|
|
|
** Inference with G-API
|
|
|
|
|
|
|
|
*** In-graph inference example
|
|
|
|
|
|
|
|
- Starting with OpencV 4.2 (2019), G-API allows to integrate ~infer~
|
|
|
|
operations into the graph:
|
|
|
|
#+LaTeX: {\scriptsize
|
|
|
|
#+BEGIN_SRC C++
|
|
|
|
G_API_NET(ObjDetect, <cv::GMat(cv::GMat)>, "pdf.example.od");
|
|
|
|
|
|
|
|
cv::GMat in;
|
|
|
|
cv::GMat blob = cv::gapi::infer<ObjDetect>(bgr);
|
|
|
|
cv::GOpaque<cv::Size> size = cv::gapi::streaming::size(bgr);
|
|
|
|
cv::GArray<cv::Rect> objs = cv::gapi::streaming::parseSSD(blob, size);
|
|
|
|
cv::GComputation pipelne(cv::GIn(in), cv::GOut(objs));
|
|
|
|
#+END_SRC
|
|
|
|
#+LaTeX: }
|
|
|
|
- Starting with OpenCV 4.5 (2020), G-API will provide more streaming-
|
|
|
|
and NN-oriented operations out of the box.
|
|
|
|
|
|
|
|
** Inference with G-API
|
|
|
|
|
|
|
|
*** What is the difference?
|
|
|
|
|
|
|
|
- ~ObjDetect~ is not an operation, ~cv::gapi::infer<T>~ is;
|
|
|
|
- ~cv::gapi::infer<T>~ is a *generic* operation, where ~T=ObjDetect~ describes
|
|
|
|
the calling convention:
|
|
|
|
- How many inputs the network consumes,
|
|
|
|
- How many outputs the network produces.
|
|
|
|
- Inference data types are ~GMat~ only:
|
|
|
|
- Representing an image, then preprocessed automatically;
|
|
|
|
- Representing a blob (n-dimensional ~Mat~), then passed as-is.
|
|
|
|
- Inference *backends* only need to implement a single generic operation ~infer~.
|
|
|
|
|
|
|
|
** Inference with G-API
|
|
|
|
|
|
|
|
*** But how does it run?
|
|
|
|
|
|
|
|
- Since ~infer~ is an *Operation*, backends may provide *Kernels* implementing it;
|
|
|
|
- The only publicly available inference backend now is *OpenVINO™*:
|
|
|
|
- Brings its ~infer~ kernel atop of the Inference Engine;
|
|
|
|
- NN model data is passed through G-API compile arguments (like kernels);
|
|
|
|
- Every NN backend provides its own structure to configure the network (like
|
|
|
|
a kernel API).
|
|
|
|
|
|
|
|
** Inference with G-API
|
|
|
|
|
|
|
|
*** Passing OpenVINO™ parameters to G-API
|
|
|
|
|
|
|
|
- ~ObjDetect~ example:
|
|
|
|
#+LaTeX: {\footnotesize
|
|
|
|
#+BEGIN_SRC C++
|
|
|
|
auto face_net = cv::gapi::ie::Params<ObjDetect> {
|
|
|
|
face_xml_path, // path to the topology IR
|
|
|
|
face_bin_path, // path to the topology weights
|
|
|
|
face_device_string, // OpenVINO plugin (device) string
|
|
|
|
};
|
|
|
|
auto networks = cv::gapi::networks(face_net);
|
|
|
|
pipeline.compile(.., cv::compile_args(..., networks));
|
|
|
|
#+END_SRC
|
|
|
|
#+LaTeX: }
|
|
|
|
- ~AgeGender~ requires binding Op's outputs to NN layers:
|
|
|
|
#+LaTeX: {\footnotesize
|
|
|
|
#+BEGIN_SRC C++
|
|
|
|
auto age_net = cv::gapi::ie::Params<AgeGender> {
|
|
|
|
...
|
|
|
|
}.cfgOutputLayers({"age_conv3", "prob"}); // array<string,2> !
|
|
|
|
#+END_SRC
|
|
|
|
#+LaTeX: }
|
|
|
|
|
|
|
|
** Streaming with G-API
|
|
|
|
|
|
|
|
#+BEGIN_SRC dot :file 020-fd-demo.eps :cmdline "-Kdot -Teps"
|
|
|
|
digraph {
|
|
|
|
rankdir=LR;
|
|
|
|
node [shape=box];
|
|
|
|
|
|
|
|
cap [label=Capture];
|
|
|
|
dec [label=Decode];
|
|
|
|
res [label=Resize];
|
|
|
|
cnn [label=Infer];
|
|
|
|
vis [label=Visualize];
|
|
|
|
|
|
|
|
cap -> dec;
|
|
|
|
dec -> res;
|
|
|
|
res -> cnn;
|
|
|
|
cnn -> vis;
|
|
|
|
}
|
|
|
|
#+END_SRC
|
|
|
|
Anatomy of a regular video analytics application
|
|
|
|
|
|
|
|
** Streaming with G-API
|
|
|
|
|
|
|
|
#+BEGIN_SRC dot :file 021-fd-serial.eps :cmdline "-Kdot -Teps"
|
|
|
|
digraph {
|
|
|
|
node [shape=box margin=0 width=0.3 height=0.4]
|
|
|
|
nodesep=0.2;
|
|
|
|
rankdir=LR;
|
|
|
|
|
|
|
|
subgraph cluster0 {
|
|
|
|
colorscheme=blues9
|
|
|
|
pp [label="..." shape=plaintext];
|
|
|
|
v0 [label=V];
|
|
|
|
label="Frame N-1";
|
|
|
|
color=7;
|
|
|
|
}
|
|
|
|
|
|
|
|
subgraph cluster1 {
|
|
|
|
colorscheme=blues9
|
|
|
|
c1 [label=C];
|
|
|
|
d1 [label=D];
|
|
|
|
r1 [label=R];
|
|
|
|
i1 [label=I];
|
|
|
|
v1 [label=V];
|
|
|
|
label="Frame N";
|
|
|
|
color=6;
|
|
|
|
}
|
|
|
|
|
|
|
|
subgraph cluster2 {
|
|
|
|
colorscheme=blues9
|
|
|
|
c2 [label=C];
|
|
|
|
nn [label="..." shape=plaintext];
|
|
|
|
label="Frame N+1";
|
|
|
|
color=5;
|
|
|
|
}
|
|
|
|
|
|
|
|
c1 -> d1 -> r1 -> i1 -> v1;
|
|
|
|
|
|
|
|
pp-> v0;
|
|
|
|
v0 -> c1 [style=invis];
|
|
|
|
v1 -> c2 [style=invis];
|
|
|
|
c2 -> nn;
|
|
|
|
}
|
|
|
|
#+END_SRC
|
|
|
|
Serial execution of the sample video analytics application
|
|
|
|
|
|
|
|
** Streaming with G-API
|
|
|
|
:PROPERTIES:
|
|
|
|
:BEAMER_opt: shrink
|
|
|
|
:END:
|
|
|
|
|
|
|
|
#+BEGIN_SRC dot :file 022-fd-pipelined.eps :cmdline "-Kdot -Teps"
|
|
|
|
digraph {
|
|
|
|
nodesep=0.2;
|
|
|
|
ranksep=0.2;
|
|
|
|
node [margin=0 width=0.4 height=0.2];
|
|
|
|
node [shape=plaintext]
|
|
|
|
Camera [label="Camera:"];
|
|
|
|
GPU [label="GPU:"];
|
|
|
|
FPGA [label="FPGA:"];
|
|
|
|
CPU [label="CPU:"];
|
|
|
|
Time [label="Time:"];
|
|
|
|
t6 [label="T6"];
|
|
|
|
t7 [label="T7"];
|
|
|
|
t8 [label="T8"];
|
|
|
|
t9 [label="T9"];
|
|
|
|
t10 [label="T10"];
|
|
|
|
tnn [label="..."];
|
|
|
|
|
|
|
|
node [shape=box margin=0 width=0.4 height=0.4 colorscheme=blues9]
|
|
|
|
node [color=9] V3;
|
|
|
|
node [color=8] F4; V4;
|
|
|
|
node [color=7] DR5; F5; V5;
|
|
|
|
node [color=6] C6; DR6; F6; V6;
|
|
|
|
node [color=5] C7; DR7; F7; V7;
|
|
|
|
node [color=4] C8; DR8; F8;
|
|
|
|
node [color=3] C9; DR9;
|
|
|
|
node [color=2] C10;
|
|
|
|
|
|
|
|
{rank=same; rankdir=LR; Camera C6 C7 C8 C9 C10}
|
|
|
|
Camera -> C6 -> C7 -> C8 -> C9 -> C10 [style=invis];
|
|
|
|
|
|
|
|
{rank=same; rankdir=LR; GPU DR5 DR6 DR7 DR8 DR9}
|
|
|
|
GPU -> DR5 -> DR6 -> DR7 -> DR8 -> DR9 [style=invis];
|
|
|
|
|
|
|
|
C6 -> DR5 [style=invis];
|
|
|
|
C6 -> DR6 [constraint=false];
|
|
|
|
C7 -> DR7 [constraint=false];
|
|
|
|
C8 -> DR8 [constraint=false];
|
|
|
|
C9 -> DR9 [constraint=false];
|
|
|
|
|
|
|
|
{rank=same; rankdir=LR; FPGA F4 F5 F6 F7 F8}
|
|
|
|
FPGA -> F4 -> F5 -> F6 -> F7 -> F8 [style=invis];
|
|
|
|
|
|
|
|
DR5 -> F4 [style=invis];
|
|
|
|
DR5 -> F5 [constraint=false];
|
|
|
|
DR6 -> F6 [constraint=false];
|
|
|
|
DR7 -> F7 [constraint=false];
|
|
|
|
DR8 -> F8 [constraint=false];
|
|
|
|
|
|
|
|
{rank=same; rankdir=LR; CPU V3 V4 V5 V6 V7}
|
|
|
|
CPU -> V3 -> V4 -> V5 -> V6 -> V7 [style=invis];
|
|
|
|
|
|
|
|
F4 -> V3 [style=invis];
|
|
|
|
F4 -> V4 [constraint=false];
|
|
|
|
F5 -> V5 [constraint=false];
|
|
|
|
F6 -> V6 [constraint=false];
|
|
|
|
F7 -> V7 [constraint=false];
|
|
|
|
|
|
|
|
{rank=same; rankdir=LR; Time t6 t7 t8 t9 t10 tnn}
|
|
|
|
Time -> t6 -> t7 -> t8 -> t9 -> t10 -> tnn [style=invis];
|
|
|
|
|
|
|
|
CPU -> Time [style=invis];
|
|
|
|
V3 -> t6 [style=invis];
|
|
|
|
V4 -> t7 [style=invis];
|
|
|
|
V5 -> t8 [style=invis];
|
|
|
|
V6 -> t9 [style=invis];
|
|
|
|
V7 -> t10 [style=invis];
|
|
|
|
}
|
|
|
|
#+END_SRC
|
|
|
|
Pipelined execution for the video analytics application
|
|
|
|
|
|
|
|
** Streaming with G-API: Example
|
|
|
|
|
|
|
|
**** Serial mode (4.0) :B_block:BMCOL:
|
|
|
|
:PROPERTIES:
|
|
|
|
:BEAMER_env: block
|
|
|
|
:BEAMER_col: 0.45
|
|
|
|
:END:
|
|
|
|
#+LaTeX: {\tiny
|
|
|
|
#+BEGIN_SRC C++
|
|
|
|
pipeline = cv::GComputation(...);
|
|
|
|
|
|
|
|
cv::VideoCapture cap(input);
|
|
|
|
cv::Mat in_frame;
|
|
|
|
std::vector<cv::Rect> out_faces;
|
|
|
|
|
|
|
|
while (cap.read(in_frame)) {
|
|
|
|
pipeline.apply(cv::gin(in_frame),
|
|
|
|
cv::gout(out_faces),
|
|
|
|
cv::compile_args(kernels,
|
|
|
|
networks));
|
|
|
|
// Process results
|
|
|
|
...
|
|
|
|
}
|
|
|
|
#+END_SRC
|
|
|
|
#+LaTeX: }
|
|
|
|
|
|
|
|
**** Streaming mode (since 4.2) :B_block:BMCOL:
|
|
|
|
:PROPERTIES:
|
|
|
|
:BEAMER_env: block
|
|
|
|
:BEAMER_col: 0.45
|
|
|
|
:END:
|
|
|
|
#+LaTeX: {\tiny
|
|
|
|
#+BEGIN_SRC C++
|
|
|
|
pipeline = cv::GComputation(...);
|
|
|
|
|
|
|
|
auto in_src = cv::gapi::wip::make_src
|
|
|
|
<cv::gapi::wip::GCaptureSource>(input)
|
|
|
|
auto cc = pipeline.compileStreaming
|
|
|
|
(cv::compile_args(kernels, networks))
|
|
|
|
cc.setSource(cv::gin(in_src));
|
|
|
|
cc.start();
|
|
|
|
|
|
|
|
std::vector<cv::Rect> out_faces;
|
|
|
|
while (cc.pull(cv::gout(out_faces))) {
|
|
|
|
// Process results
|
|
|
|
...
|
|
|
|
}
|
|
|
|
#+END_SRC
|
|
|
|
#+LaTeX: }
|
|
|
|
|
|
|
|
**** More information
|
|
|
|
|
|
|
|
#+LaTeX: {\footnotesize
|
|
|
|
https://opencv.org/hybrid-cv-dl-pipelines-with-opencv-4-4-g-api/
|
|
|
|
#+LaTeX: }
|
|
|
|
|
|
|
|
* Latest features
|
|
|
|
** Latest features
|
|
|
|
*** Python API
|
|
|
|
|
|
|
|
- Initial Python3 binding is available now in ~master~ (future 4.5);
|
|
|
|
- Only basic CV functionality is supported (~core~ & ~imgproc~ namespaces,
|
|
|
|
selecting backends);
|
|
|
|
- Adding more programmability, inference, and streaming is next.
|
|
|
|
|
|
|
|
** Latest features
|
|
|
|
*** Python API
|
|
|
|
|
|
|
|
#+LaTeX: {\footnotesize
|
|
|
|
#+BEGIN_SRC Python
|
|
|
|
import numpy as np
|
|
|
|
import cv2 as cv
|
|
|
|
|
|
|
|
sz = (1280, 720)
|
|
|
|
in1 = np.random.randint(0, 100, sz).astype(np.uint8)
|
|
|
|
in2 = np.random.randint(0, 100, sz).astype(np.uint8)
|
|
|
|
|
|
|
|
g_in1 = cv.GMat()
|
|
|
|
g_in2 = cv.GMat()
|
|
|
|
g_out = cv.gapi.add(g_in1, g_in2)
|
|
|
|
gr = cv.GComputation(g_in1, g_in2, g_out)
|
|
|
|
|
|
|
|
pkg = cv.gapi.core.fluid.kernels()
|
|
|
|
out = gr.apply(in1, in2, args=cv.compile_args(pkg))
|
|
|
|
#+END_SRC
|
|
|
|
#+LaTeX: }
|
|
|
|
|
|
|
|
* Understanding the "G-Effect"
|
|
|
|
|
|
|
|
** Understanding the "G-Effect"
|
|
|
|
|
|
|
|
*** What is "G-Effect"?
|
|
|
|
|
|
|
|
- G-API is not only an API, but also an /implementation/;
|
|
|
|
- i.e. it does some work already!
|
|
|
|
- We call "G-Effect" any measurable improvement which G-API demonstrates
|
|
|
|
against traditional methods;
|
|
|
|
- So far the list is:
|
|
|
|
- Memory consumption;
|
|
|
|
- Performance;
|
|
|
|
- Programmer efforts.
|
|
|
|
|
|
|
|
Note: in the following slides, all measurements are taken on
|
|
|
|
Intel\textregistered{} Core\texttrademark-i5 6600 CPU.
|
|
|
|
|
|
|
|
** Understanding the "G-Effect"
|
|
|
|
# FIXME
|
|
|
|
|
|
|
|
*** Memory consumption: Sobel Edge Detector
|
|
|
|
|
|
|
|
- G-API/Fluid backend is designed to minimize footprint:
|
|
|
|
#+LaTeX: {\footnotesize
|
|
|
|
| Input | OpenCV | G-API/Fluid | Factor |
|
|
|
|
| | MiB | MiB | Times |
|
|
|
|
|-------------+--------+-------------+--------|
|
|
|
|
| 512 x 512 | 17.33 | 0.59 | 28.9x |
|
|
|
|
| 640 x 480 | 20.29 | 0.62 | 32.8x |
|
|
|
|
| 1280 x 720 | 60.73 | 0.72 | 83.9x |
|
|
|
|
| 1920 x 1080 | 136.53 | 0.83 | 164.7x |
|
|
|
|
| 3840 x 2160 | 545.88 | 1.22 | 447.4x |
|
|
|
|
#+LaTeX: }
|
|
|
|
- The detector itself can be written manually in two ~for~
|
|
|
|
loops, but G-API covers cases more complex than that;
|
|
|
|
- OpenCV code requires changes to shrink footprint.
|
|
|
|
|
|
|
|
** Understanding the "G-Effect"
|
|
|
|
|
|
|
|
*** Performance: Sobel Edge Detector
|
|
|
|
|
|
|
|
- G-API/Fluid backend also optimizes cache reuse:
|
|
|
|
|
|
|
|
#+LaTeX: {\footnotesize
|
|
|
|
| Input | OpenCV | G-API/Fluid | Factor |
|
|
|
|
| | ms | ms | Times |
|
|
|
|
|-------------+--------+-------------+--------|
|
|
|
|
| 320 x 240 | 1.16 | 0.53 | 2.17x |
|
|
|
|
| 640 x 480 | 5.66 | 1.89 | 2.99x |
|
|
|
|
| 1280 x 720 | 17.24 | 5.26 | 3.28x |
|
|
|
|
| 1920 x 1080 | 39.04 | 12.29 | 3.18x |
|
|
|
|
| 3840 x 2160 | 219.57 | 51.22 | 4.29x |
|
|
|
|
#+LaTeX: }
|
|
|
|
|
|
|
|
- The more data is processed, the bigger "G-Effect" is.
|
|
|
|
|
|
|
|
** Understanding the "G-Effect"
|
|
|
|
|
|
|
|
*** Relative speed-up based on cache efficiency
|
|
|
|
|
|
|
|
#+BEGIN_LATEX
|
|
|
|
\begin{figure}
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\begin{axis}[
|
|
|
|
xlabel={Image size},
|
|
|
|
ylabel={Relative speed-up},
|
|
|
|
nodes near coords,
|
|
|
|
width=0.8\textwidth,
|
|
|
|
xtick=data,
|
|
|
|
xticklabels={QVGA, VGA, HD, FHD, UHD},
|
|
|
|
height=4.5cm,
|
|
|
|
]
|
|
|
|
|
|
|
|
\addplot plot coordinates {(1, 1.0) (2, 1.38) (3, 1.51) (4, 1.46) (5, 1.97)};
|
|
|
|
|
|
|
|
\end{axis}
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{figure}
|
|
|
|
#+END_LATEX
|
|
|
|
|
|
|
|
The higher resolution is, the higher relative speed-up is (with
|
|
|
|
speed-up on QVGA taken as 1.0).
|
|
|
|
|
|
|
|
* Resources on G-API
|
|
|
|
|
|
|
|
** Resources on G-API
|
|
|
|
:PROPERTIES:
|
|
|
|
:BEAMER_opt: shrink
|
|
|
|
:END:
|
|
|
|
*** Repository
|
|
|
|
|
|
|
|
- https://github.com/opencv/opencv (see ~modules/gapi~)
|
|
|
|
|
|
|
|
*** Article
|
|
|
|
|
|
|
|
- https://opencv.org/hybrid-cv-dl-pipelines-with-opencv-4-4-g-api/
|
|
|
|
|
|
|
|
*** Documentation
|
|
|
|
|
|
|
|
- https://docs.opencv.org/4.4.0/d0/d1e/gapi.html
|
|
|
|
|
|
|
|
*** Tutorials
|
|
|
|
- https://docs.opencv.org/4.4.0/df/d7e/tutorial_table_of_content_gapi.html
|
|
|
|
|
|
|
|
* Thank you!
|