|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#include "opencv2/photo.hpp"
|
|
|
|
#include <string>
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
//#define DUMP_RESULTS
|
|
|
|
|
|
|
|
#ifdef DUMP_RESULTS
|
|
|
|
# define DUMP(image, path) imwrite(path, image)
|
|
|
|
#else
|
|
|
|
# define DUMP(image, path)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
TEST(Photo_DenoisingGrayscale, regression)
|
|
|
|
{
|
|
|
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "denoising/";
|
|
|
|
string original_path = folder + "lena_noised_gaussian_sigma=10.png";
|
|
|
|
string expected_path = folder + "lena_noised_denoised_grayscale_tw=7_sw=21_h=10.png";
|
|
|
|
|
|
|
|
Mat original = imread(original_path, CV_LOAD_IMAGE_GRAYSCALE);
|
|
|
|
Mat expected = imread(expected_path, CV_LOAD_IMAGE_GRAYSCALE);
|
|
|
|
|
|
|
|
ASSERT_FALSE(original.empty()) << "Could not load input image " << original_path;
|
|
|
|
ASSERT_FALSE(expected.empty()) << "Could not load reference image " << expected_path;
|
|
|
|
|
|
|
|
Mat result;
|
|
|
|
fastNlMeansDenoising(original, result, 10);
|
|
|
|
|
|
|
|
DUMP(result, expected_path + ".res.png");
|
|
|
|
|
|
|
|
ASSERT_EQ(0, norm(result != expected));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Photo_DenoisingColored, regression)
|
|
|
|
{
|
|
|
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "denoising/";
|
|
|
|
string original_path = folder + "lena_noised_gaussian_sigma=10.png";
|
|
|
|
string expected_path = folder + "lena_noised_denoised_lab12_tw=7_sw=21_h=10_h2=10.png";
|
|
|
|
|
|
|
|
Mat original = imread(original_path, CV_LOAD_IMAGE_COLOR);
|
|
|
|
Mat expected = imread(expected_path, CV_LOAD_IMAGE_COLOR);
|
|
|
|
|
|
|
|
ASSERT_FALSE(original.empty()) << "Could not load input image " << original_path;
|
|
|
|
ASSERT_FALSE(expected.empty()) << "Could not load reference image " << expected_path;
|
|
|
|
|
|
|
|
Mat result;
|
|
|
|
fastNlMeansDenoisingColored(original, result, 10, 10);
|
|
|
|
|
|
|
|
DUMP(result, expected_path + ".res.png");
|
|
|
|
|
|
|
|
ASSERT_EQ(0, norm(result != expected));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Photo_DenoisingGrayscaleMulti, regression)
|
|
|
|
{
|
|
|
|
const int imgs_count = 3;
|
|
|
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "denoising/";
|
|
|
|
|
|
|
|
string expected_path = folder + "lena_noised_denoised_multi_tw=7_sw=21_h=15.png";
|
|
|
|
Mat expected = imread(expected_path, CV_LOAD_IMAGE_GRAYSCALE);
|
|
|
|
ASSERT_FALSE(expected.empty()) << "Could not load reference image " << expected_path;
|
|
|
|
|
|
|
|
vector<Mat> original(imgs_count);
|
|
|
|
for (int i = 0; i < imgs_count; i++)
|
|
|
|
{
|
|
|
|
string original_path = format("%slena_noised_gaussian_sigma=20_multi_%d.png", folder.c_str(), i);
|
|
|
|
original[i] = imread(original_path, CV_LOAD_IMAGE_GRAYSCALE);
|
|
|
|
ASSERT_FALSE(original[i].empty()) << "Could not load input image " << original_path;
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat result;
|
|
|
|
fastNlMeansDenoisingMulti(original, result, imgs_count / 2, imgs_count, 15);
|
|
|
|
|
|
|
|
DUMP(result, expected_path + ".res.png");
|
|
|
|
|
|
|
|
ASSERT_EQ(0, norm(result != expected));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Photo_DenoisingColoredMulti, regression)
|
|
|
|
{
|
|
|
|
const int imgs_count = 3;
|
|
|
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "denoising/";
|
|
|
|
|
|
|
|
string expected_path = folder + "lena_noised_denoised_multi_lab12_tw=7_sw=21_h=10_h2=15.png";
|
|
|
|
Mat expected = imread(expected_path, CV_LOAD_IMAGE_COLOR);
|
|
|
|
ASSERT_FALSE(expected.empty()) << "Could not load reference image " << expected_path;
|
|
|
|
|
|
|
|
vector<Mat> original(imgs_count);
|
|
|
|
for (int i = 0; i < imgs_count; i++)
|
|
|
|
{
|
|
|
|
string original_path = format("%slena_noised_gaussian_sigma=20_multi_%d.png", folder.c_str(), i);
|
|
|
|
original[i] = imread(original_path, CV_LOAD_IMAGE_COLOR);
|
|
|
|
ASSERT_FALSE(original[i].empty()) << "Could not load input image " << original_path;
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat result;
|
|
|
|
fastNlMeansDenoisingColoredMulti(original, result, imgs_count / 2, imgs_count, 10, 15);
|
|
|
|
|
|
|
|
DUMP(result, expected_path + ".res.png");
|
|
|
|
|
|
|
|
ASSERT_EQ(0, norm(result != expected));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Photo_White, issue_2646)
|
|
|
|
{
|
|
|
|
cv::Mat img(50, 50, CV_8UC1, cv::Scalar::all(255));
|
|
|
|
cv::Mat filtered;
|
|
|
|
cv::fastNlMeansDenoising(img, filtered);
|
|
|
|
|
|
|
|
int nonWhitePixelsCount = (int)img.total() - cv::countNonZero(filtered == img);
|
|
|
|
|
|
|
|
ASSERT_EQ(0, nonWhitePixelsCount);
|
|
|
|
}
|