Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

217 lines
8.5 KiB

#include <algorithm>
#include <iostream>
#include <cctype>
#include <opencv2/imgproc.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/imgproc.hpp>
#include <opencv2/gapi/infer.hpp>
#include <opencv2/gapi/render.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/gapi/streaming/cap.hpp>
#include <opencv2/highgui.hpp>
const std::string about =
"This is an OpenCV-based version of Privacy Masking Camera example";
const std::string keys =
"{ h help | | Print this help message }"
"{ input | | Path to the input video file }"
"{ platm | vehicle-license-plate-detection-barrier-0106.xml | Path to OpenVINO IE vehicle/plate detection model (.xml) }"
"{ platd | CPU | Target device for vehicle/plate detection model (e.g. CPU, GPU, VPU, ...) }"
"{ facem | face-detection-adas-0001.xml | Path to OpenVINO IE face detection model (.xml) }"
"{ faced | CPU | Target device for face detection model (e.g. CPU, GPU, VPU, ...) }"
"{ trad | false | Run processing in a traditional (non-pipelined) way }"
"{ noshow | false | Don't display UI (improves performance) }";
namespace {
std::string weights_path(const std::string &model_path) {
const auto EXT_LEN = 4u;
const auto sz = model_path.size();
CV_Assert(sz > EXT_LEN);
auto ext = model_path.substr(sz - EXT_LEN);
std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){ return static_cast<unsigned char>(std::tolower(c)); });
CV_Assert(ext == ".xml");
return model_path.substr(0u, sz - EXT_LEN) + ".bin";
}
} // namespace
namespace custom {
G_API_NET(VehLicDetector, <cv::GMat(cv::GMat)>, "vehicle-license-plate-detector");
G_API_NET(FaceDetector, <cv::GMat(cv::GMat)>, "face-detector");
using GDetections = cv::GArray<cv::Rect>;
G_API_OP(ParseSSD, <GDetections(cv::GMat, cv::GMat, int)>, "custom.privacy_masking.postproc") {
static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GMatDesc &, int) {
return cv::empty_array_desc();
}
};
using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>;
G_API_OP(ToMosaic, <GPrims(GDetections, GDetections)>, "custom.privacy_masking.to_mosaic") {
static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GArrayDesc &) {
return cv::empty_array_desc();
}
};
GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) {
static void run(const cv::Mat &in_ssd_result,
const cv::Mat &in_frame,
const int filter_label,
std::vector<cv::Rect> &out_objects) {
const auto &in_ssd_dims = in_ssd_result.size;
CV_Assert(in_ssd_dims.dims() == 4u);
const int MAX_PROPOSALS = in_ssd_dims[2];
const int OBJECT_SIZE = in_ssd_dims[3];
CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size
const cv::Size upscale = in_frame.size();
const cv::Rect surface({0,0}, upscale);
out_objects.clear();
const float *data = in_ssd_result.ptr<float>();
for (int i = 0; i < MAX_PROPOSALS; i++) {
const float image_id = data[i * OBJECT_SIZE + 0];
const float label = data[i * OBJECT_SIZE + 1];
const float confidence = data[i * OBJECT_SIZE + 2];
const float rc_left = data[i * OBJECT_SIZE + 3];
const float rc_top = data[i * OBJECT_SIZE + 4];
const float rc_right = data[i * OBJECT_SIZE + 5];
const float rc_bottom = data[i * OBJECT_SIZE + 6];
if (image_id < 0.f) {
break; // marks end-of-detections
}
if (confidence < 0.5f) {
continue; // skip objects with low confidence
}
if (filter_label != -1 && static_cast<int>(label) != filter_label) {
continue; // filter out object classes if filter is specified
}
cv::Rect rc; // map relative coordinates to the original image scale
rc.x = static_cast<int>(rc_left * upscale.width);
rc.y = static_cast<int>(rc_top * upscale.height);
rc.width = static_cast<int>(rc_right * upscale.width) - rc.x;
rc.height = static_cast<int>(rc_bottom * upscale.height) - rc.y;
out_objects.emplace_back(rc & surface);
}
}
};
GAPI_OCV_KERNEL(OCVToMosaic, ToMosaic) {
static void run(const std::vector<cv::Rect> &in_plate_rcs,
const std::vector<cv::Rect> &in_face_rcs,
std::vector<cv::gapi::wip::draw::Prim> &out_prims) {
out_prims.clear();
const auto cvt = [](cv::Rect rc) {
// Align the mosaic region to mosaic block size
const int BLOCK_SIZE = 24;
const int dw = BLOCK_SIZE - (rc.width % BLOCK_SIZE);
const int dh = BLOCK_SIZE - (rc.height % BLOCK_SIZE);
rc.width += dw;
rc.height += dh;
rc.x -= dw / 2;
rc.y -= dh / 2;
return cv::gapi::wip::draw::Mosaic{rc, BLOCK_SIZE, 0};
};
for (auto &&rc : in_plate_rcs) { out_prims.emplace_back(cvt(rc)); }
for (auto &&rc : in_face_rcs) { out_prims.emplace_back(cvt(rc)); }
}
};
} // namespace custom
int main(int argc, char *argv[])
{
cv::CommandLineParser cmd(argc, argv, keys);
cmd.about(about);
if (cmd.has("help")) {
cmd.printMessage();
return 0;
}
const std::string input = cmd.get<std::string>("input");
const bool no_show = cmd.get<bool>("noshow");
const bool run_trad = cmd.get<bool>("trad");
cv::GMat in;
cv::GMat blob_plates = cv::gapi::infer<custom::VehLicDetector>(in);
cv::GMat blob_faces = cv::gapi::infer<custom::FaceDetector>(in);
// VehLicDetector from Open Model Zoo marks vehicles with label "1" and
// license plates with label "2", filter out license plates only.
cv::GArray<cv::Rect> rc_plates = custom::ParseSSD::on(blob_plates, in, 2);
// Face detector produces faces only so there's no need to filter by label,
// pass "-1".
cv::GArray<cv::Rect> rc_faces = custom::ParseSSD::on(blob_faces, in, -1);
cv::GMat out = cv::gapi::wip::draw::render3ch(in, custom::ToMosaic::on(rc_plates, rc_faces));
cv::GComputation graph(in, out);
const auto plate_model_path = cmd.get<std::string>("platm");
auto plate_net = cv::gapi::ie::Params<custom::VehLicDetector> {
plate_model_path, // path to topology IR
weights_path(plate_model_path), // path to weights
cmd.get<std::string>("platd"), // device specifier
};
const auto face_model_path = cmd.get<std::string>("facem");
auto face_net = cv::gapi::ie::Params<custom::FaceDetector> {
face_model_path, // path to topology IR
weights_path(face_model_path), // path to weights
cmd.get<std::string>("faced"), // device specifier
};
auto kernels = cv::gapi::kernels<custom::OCVParseSSD, custom::OCVToMosaic>();
auto networks = cv::gapi::networks(plate_net, face_net);
cv::TickMeter tm;
cv::Mat out_frame;
std::size_t frames = 0u;
std::cout << "Reading " << input << std::endl;
if (run_trad) {
cv::Mat in_frame;
cv::VideoCapture cap(input);
cap >> in_frame;
auto exec = graph.compile(cv::descr_of(in_frame), cv::compile_args(kernels, networks));
tm.start();
do {
exec(in_frame, out_frame);
if (!no_show) {
cv::imshow("Out", out_frame);
cv::waitKey(1);
}
frames++;
} while (cap.read(in_frame));
tm.stop();
} else {
auto pipeline = graph.compileStreaming(cv::compile_args(kernels, networks));
pipeline.setSource(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input));
pipeline.start();
tm.start();
while (pipeline.pull(cv::gout(out_frame))) {
frames++;
if (!no_show) {
cv::imshow("Out", out_frame);
cv::waitKey(1);
}
}
tm.stop();
}
std::cout << "Processed " << frames << " frames"
<< " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
return 0;
}