|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
|
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// @Authors
|
|
|
|
// Jin Ma, jin@multicorewareinc.com
|
|
|
|
// Xiaopeng Fu, fuxiaopeng2222@163.com
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors as is and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
#include "perf_precomp.hpp"
|
|
|
|
using namespace perf;
|
|
|
|
using namespace std;
|
|
|
|
using namespace cv::ocl;
|
|
|
|
using namespace cv;
|
|
|
|
using std::tr1::tuple;
|
|
|
|
using std::tr1::get;
|
|
|
|
////////////////////////////////// K-NEAREST NEIGHBOR ////////////////////////////////////
|
|
|
|
static void genData(Mat& trainData, Size size, Mat& trainLabel = Mat().setTo(Scalar::all(0)), int nClasses = 0)
|
|
|
|
{
|
|
|
|
trainData.create(size, CV_32FC1);
|
|
|
|
randu(trainData, 1.0, 100.0);
|
|
|
|
|
|
|
|
if (nClasses != 0)
|
|
|
|
{
|
|
|
|
trainLabel.create(size.height, 1, CV_8UC1);
|
|
|
|
randu(trainLabel, 0, nClasses - 1);
|
|
|
|
trainLabel.convertTo(trainLabel, CV_32FC1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef tuple<int> KNNParamType;
|
|
|
|
typedef TestBaseWithParam<KNNParamType> KNNFixture;
|
|
|
|
|
|
|
|
PERF_TEST_P(KNNFixture, KNN,
|
|
|
|
testing::Values(1000, 2000, 4000))
|
|
|
|
{
|
|
|
|
KNNParamType params = GetParam();
|
|
|
|
const int rows = get<0>(params);
|
|
|
|
int columns = 100;
|
|
|
|
int k = rows/250;
|
|
|
|
|
|
|
|
Mat trainData, trainLabels;
|
|
|
|
Size size(columns, rows);
|
|
|
|
genData(trainData, size, trainLabels, 3);
|
|
|
|
|
|
|
|
Mat testData;
|
|
|
|
genData(testData, size);
|
|
|
|
Mat best_label;
|
|
|
|
|
|
|
|
if (RUN_PLAIN_IMPL)
|
|
|
|
{
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
CvKNearest knn_cpu;
|
|
|
|
knn_cpu.train(trainData, trainLabels);
|
|
|
|
knn_cpu.find_nearest(testData, k, &best_label);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (RUN_OCL_IMPL)
|
|
|
|
{
|
|
|
|
cv::ocl::oclMat best_label_ocl;
|
|
|
|
cv::ocl::oclMat testdata;
|
|
|
|
testdata.upload(testData);
|
|
|
|
|
|
|
|
OCL_TEST_CYCLE()
|
|
|
|
{
|
|
|
|
cv::ocl::KNearestNeighbour knn_ocl;
|
|
|
|
knn_ocl.train(trainData, trainLabels);
|
|
|
|
knn_ocl.find_nearest(testdata, k, best_label_ocl);
|
|
|
|
}
|
|
|
|
best_label_ocl.download(best_label);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
OCL_PERF_ELSE
|
|
|
|
SANITY_CHECK(best_label);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
typedef TestBaseWithParam<tuple<int> > SVMFixture;
|
|
|
|
|
|
|
|
// code is based on: samples\cpp\tutorial_code\ml\non_linear_svms\non_linear_svms.cpp
|
|
|
|
PERF_TEST_P(SVMFixture, DISABLED_SVM,
|
|
|
|
testing::Values(50, 100))
|
|
|
|
{
|
|
|
|
|
|
|
|
const int NTRAINING_SAMPLES = get<0>(GetParam()); // Number of training samples per class
|
|
|
|
|
|
|
|
#define FRAC_LINEAR_SEP 0.9f // Fraction of samples which compose the linear separable part
|
|
|
|
|
|
|
|
const int WIDTH = 512, HEIGHT = 512;
|
|
|
|
|
|
|
|
Mat trainData(2*NTRAINING_SAMPLES, 2, CV_32FC1);
|
|
|
|
Mat labels (2*NTRAINING_SAMPLES, 1, CV_32FC1);
|
|
|
|
|
|
|
|
RNG rng(100); // Random value generation class
|
|
|
|
|
|
|
|
// Set up the linearly separable part of the training data
|
|
|
|
int nLinearSamples = (int) (FRAC_LINEAR_SEP * NTRAINING_SAMPLES);
|
|
|
|
|
|
|
|
// Generate random points for the class 1
|
|
|
|
Mat trainClass = trainData.rowRange(0, nLinearSamples);
|
|
|
|
// The x coordinate of the points is in [0, 0.4)
|
|
|
|
Mat c = trainClass.colRange(0, 1);
|
|
|
|
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(0.4 * WIDTH));
|
|
|
|
// The y coordinate of the points is in [0, 1)
|
|
|
|
c = trainClass.colRange(1,2);
|
|
|
|
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
|
|
|
|
|
|
|
|
// Generate random points for the class 2
|
|
|
|
trainClass = trainData.rowRange(2*NTRAINING_SAMPLES-nLinearSamples, 2*NTRAINING_SAMPLES);
|
|
|
|
// The x coordinate of the points is in [0.6, 1]
|
|
|
|
c = trainClass.colRange(0 , 1);
|
|
|
|
rng.fill(c, RNG::UNIFORM, Scalar(0.6*WIDTH), Scalar(WIDTH));
|
|
|
|
// The y coordinate of the points is in [0, 1)
|
|
|
|
c = trainClass.colRange(1,2);
|
|
|
|
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
|
|
|
|
|
|
|
|
//------------------ Set up the non-linearly separable part of the training data ---------------
|
|
|
|
|
|
|
|
// Generate random points for the classes 1 and 2
|
|
|
|
trainClass = trainData.rowRange( nLinearSamples, 2*NTRAINING_SAMPLES-nLinearSamples);
|
|
|
|
// The x coordinate of the points is in [0.4, 0.6)
|
|
|
|
c = trainClass.colRange(0,1);
|
|
|
|
rng.fill(c, RNG::UNIFORM, Scalar(0.4*WIDTH), Scalar(0.6*WIDTH));
|
|
|
|
// The y coordinate of the points is in [0, 1)
|
|
|
|
c = trainClass.colRange(1,2);
|
|
|
|
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
|
|
|
|
|
|
|
|
//------------------------- Set up the labels for the classes ---------------------------------
|
|
|
|
labels.rowRange( 0, NTRAINING_SAMPLES).setTo(1); // Class 1
|
|
|
|
labels.rowRange(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES).setTo(2); // Class 2
|
|
|
|
|
|
|
|
//------------------------ Set up the support vector machines parameters --------------------
|
|
|
|
CvSVMParams params;
|
|
|
|
params.svm_type = SVM::C_SVC;
|
|
|
|
params.C = 0.1;
|
|
|
|
params.kernel_type = SVM::LINEAR;
|
|
|
|
params.term_crit = TermCriteria(CV_TERMCRIT_ITER, (int)1e7, 1e-6);
|
|
|
|
|
|
|
|
Mat dst = Mat::zeros(HEIGHT, WIDTH, CV_8UC1);
|
|
|
|
|
|
|
|
Mat samples(WIDTH*HEIGHT, 2, CV_32FC1);
|
|
|
|
int k = 0;
|
|
|
|
for (int i = 0; i < HEIGHT; ++i)
|
|
|
|
{
|
|
|
|
for (int j = 0; j < WIDTH; ++j)
|
|
|
|
{
|
|
|
|
samples.at<float>(k, 0) = (float)i;
|
|
|
|
samples.at<float>(k, 0) = (float)j;
|
|
|
|
k++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
Mat results(WIDTH*HEIGHT, 1, CV_32FC1);
|
|
|
|
|
|
|
|
CvMat samples_ = samples;
|
|
|
|
CvMat results_ = results;
|
|
|
|
|
|
|
|
if (RUN_PLAIN_IMPL)
|
|
|
|
{
|
|
|
|
CvSVM svm;
|
|
|
|
svm.train(trainData, labels, Mat(), Mat(), params);
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
svm.predict(&samples_, &results_);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (RUN_OCL_IMPL)
|
|
|
|
{
|
|
|
|
CvSVM_OCL svm;
|
|
|
|
svm.train(trainData, labels, Mat(), Mat(), params);
|
|
|
|
OCL_TEST_CYCLE()
|
|
|
|
{
|
|
|
|
svm.predict(&samples_, &results_);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
OCL_PERF_ELSE
|
|
|
|
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
|
|
}
|