Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

435 lines
20 KiB

/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3-clause BSD License)
*
* Copyright (C) 2015, NVIDIA Corporation, all rights reserved.
* Third party copyrights are property of their respective owners.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort (including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "remap.hpp"
namespace CAROTENE_NS {
bool isWarpAffineNearestNeighborSupported(const Size2D &ssize)
{
#if SIZE_MAX > UINT32_MAX
return !(ssize.width > 0xffffFFFF || ssize.height > 0xffffFFFF) && // Restrict image size since internal index evaluation
// is performed with u32
isSupportedConfiguration();
#else
(void)ssize;
return isSupportedConfiguration();
#endif
}
bool isWarpAffineLinearSupported(const Size2D &ssize)
{
#if SIZE_MAX > UINT32_MAX
return !(ssize.width > 0xffffFFFF || ssize.height > 0xffffFFFF) && // Restrict image size since internal index evaluation
// is performed with u32
isSupportedConfiguration();
#else
(void)ssize;
return isSupportedConfiguration();
#endif
}
void warpAffineNearestNeighbor(const Size2D &ssize, const Size2D &dsize,
const u8 * srcBase, ptrdiff_t srcStride,
const f32 * m,
u8 * dstBase, ptrdiff_t dstStride,
BORDER_MODE borderMode, u8 borderValue)
{
internal::assertSupportedConfiguration(isWarpAffineNearestNeighborSupported(ssize));
#ifdef CAROTENE_NEON
using namespace internal;
s32 _map[BLOCK_SIZE * BLOCK_SIZE + 16];
s32 * map = alignPtr(_map, 16);
int32x4_t v_width4 = vdupq_n_s32(ssize.width - 1), v_height4 = vdupq_n_s32(ssize.height - 1);
int32x4_t v_step4 = vdupq_n_s32(srcStride);
float32x4_t v_4 = vdupq_n_f32(4.0f);
float32x4_t v_m0 = vdupq_n_f32(m[0]);
float32x4_t v_m1 = vdupq_n_f32(m[1]);
float32x4_t v_m2 = vdupq_n_f32(m[2]);
float32x4_t v_m3 = vdupq_n_f32(m[3]);
float32x4_t v_m4 = vdupq_n_f32(m[4]);
float32x4_t v_m5 = vdupq_n_f32(m[5]);
if (borderMode == BORDER_MODE_REPLICATE)
{
int32x4_t v_zero4 = vdupq_n_s32(0);
for (size_t i = 0; i < dsize.height; i += BLOCK_SIZE)
{
size_t blockHeight = std::min<size_t>(BLOCK_SIZE, dsize.height - i);
for (size_t j = 0; j < dsize.width; j += BLOCK_SIZE)
{
size_t blockWidth = std::min<size_t>(BLOCK_SIZE, dsize.width - j);
// compute table
for (size_t y = 0; y < blockHeight; ++y)
{
s32 * map_row = getRowPtr(&map[0], blockWidth * sizeof(s32), y);
size_t x = 0, y_ = y + i;
f32 indeces[4] = { j + 0.0f, j + 1.0f, j + 2.0f, j + 3.0f };
float32x4_t v_x = vld1q_f32(indeces), v_y = vdupq_n_f32(y_);
float32x4_t v_yx = vmlaq_f32(v_m4, v_m2, v_y), v_yy = vmlaq_f32(v_m5, v_m3, v_y);
for ( ; x + 4 <= blockWidth; x += 4)
{
float32x4_t v_src_xf = vmlaq_f32(v_yx, v_m0, v_x);
float32x4_t v_src_yf = vmlaq_f32(v_yy, v_m1, v_x);
int32x4_t v_src_x = vmaxq_s32(v_zero4, vminq_s32(v_width4, vcvtq_s32_f32(v_src_xf)));
int32x4_t v_src_y = vmaxq_s32(v_zero4, vminq_s32(v_height4, vcvtq_s32_f32(v_src_yf)));
int32x4_t v_src_index = vmlaq_s32(v_src_x, v_src_y, v_step4);
vst1q_s32(map_row + x, v_src_index);
v_x = vaddq_f32(v_x, v_4);
}
f32 yx = m[2] * y_ + m[4], yy = m[3] * y_ + m[5];
for (ptrdiff_t x_ = x + j; x < blockWidth; ++x, ++x_)
{
f32 src_x_f = m[0] * x_ + yx;
f32 src_y_f = m[1] * x_ + yy;
s32 src_x = floorf(src_x_f), src_y = floorf(src_y_f);
src_x = std::max(0, std::min<s32>(ssize.width - 1, src_x));
src_y = std::max(0, std::min<s32>(ssize.height - 1, src_y));
map_row[x] = src_y * srcStride + src_x;
}
}
// make remap
remapNearestNeighborReplicate(Size2D(blockWidth, blockHeight), srcBase, &map[0],
getRowPtr(dstBase, dstStride, i) + j, dstStride);
}
}
}
else if (borderMode == BORDER_MODE_CONSTANT)
{
int32x4_t v_m1_4 = vdupq_n_s32(-1);
float32x4_t v_zero4 = vdupq_n_f32(0.0f);
for (size_t i = 0; i < dsize.height; i += BLOCK_SIZE)
{
size_t blockHeight = std::min<size_t>(BLOCK_SIZE, dsize.height - i);
for (size_t j = 0; j < dsize.width; j += BLOCK_SIZE)
{
size_t blockWidth = std::min<size_t>(BLOCK_SIZE, dsize.width - j);
// compute table
for (size_t y = 0; y < blockHeight; ++y)
{
s32 * map_row = getRowPtr(&map[0], blockWidth * sizeof(s32), y);
size_t x = 0, y_ = y + i;
f32 indeces[4] = { j + 0.0f, j + 1.0f, j + 2.0f, j + 3.0f };
float32x4_t v_x = vld1q_f32(indeces), v_y = vdupq_n_f32(y_);
float32x4_t v_yx = vmlaq_f32(v_m4, v_m2, v_y), v_yy = vmlaq_f32(v_m5, v_m3, v_y);
for ( ; x + 4 <= blockWidth; x += 4)
{
float32x4_t v_src_xf = vmlaq_f32(v_yx, v_m0, v_x);
float32x4_t v_src_yf = vmlaq_f32(v_yy, v_m1, v_x);
int32x4_t v_src_x = vcvtq_s32_f32(v_src_xf);
int32x4_t v_src_y = vcvtq_s32_f32(v_src_yf);
uint32x4_t v_mask = vandq_u32(vandq_u32(vcgeq_f32(v_src_xf, v_zero4), vcleq_s32(v_src_x, v_width4)),
vandq_u32(vcgeq_f32(v_src_yf, v_zero4), vcleq_s32(v_src_y, v_height4)));
int32x4_t v_src_index = vbslq_s32(v_mask, vmlaq_s32(v_src_x, v_src_y, v_step4), v_m1_4);
vst1q_s32(map_row + x, v_src_index);
v_x = vaddq_f32(v_x, v_4);
}
f32 yx = m[2] * y_ + m[4], yy = m[3] * y_ + m[5];
for (ptrdiff_t x_ = x + j; x < blockWidth; ++x, ++x_)
{
f32 src_x_f = m[0] * x_ + yx;
f32 src_y_f = m[1] * x_ + yy;
s32 src_x = floorf(src_x_f), src_y = floorf(src_y_f);
map_row[x] = (src_x >= 0) && (src_x < (s32)ssize.width) &&
(src_y >= 0) && (src_y < (s32)ssize.height) ? src_y * srcStride + src_x : -1;
}
}
// make remap
remapNearestNeighborConst(Size2D(blockWidth, blockHeight), srcBase, &map[0],
getRowPtr(dstBase, dstStride, i) + j, dstStride, borderValue);
}
}
}
#else
(void)ssize;
(void)dsize;
(void)srcBase;
(void)srcStride;
(void)m;
(void)dstBase;
(void)dstStride;
(void)borderMode;
(void)borderValue;
#endif
}
void warpAffineLinear(const Size2D &ssize, const Size2D &dsize,
const u8 * srcBase, ptrdiff_t srcStride,
const f32 * m,
u8 * dstBase, ptrdiff_t dstStride,
BORDER_MODE borderMode, u8 borderValue)
{
internal::assertSupportedConfiguration(isWarpAffineLinearSupported(ssize));
#ifdef CAROTENE_NEON
using namespace internal;
s32 _map[((BLOCK_SIZE * BLOCK_SIZE) << 2) + 16];
f32 _coeffs[((BLOCK_SIZE * BLOCK_SIZE) << 1) + 16];
s32 * map = alignPtr(_map, 16);
f32 * coeffs = alignPtr(_coeffs, 16);
int32x4_t v_width4 = vdupq_n_s32(ssize.width - 1), v_height4 = vdupq_n_s32(ssize.height - 1);
int32x4_t v_step4 = vdupq_n_s32(srcStride), v_1 = vdupq_n_s32(1);
float32x4_t v_zero4f = vdupq_n_f32(0.0f), v_one4f = vdupq_n_f32(1.0f);
float32x4_t v_m0 = vdupq_n_f32(m[0]);
float32x4_t v_m1 = vdupq_n_f32(m[1]);
float32x4_t v_m2 = vdupq_n_f32(m[2]);
float32x4_t v_m3 = vdupq_n_f32(m[3]);
float32x4_t v_m4 = vdupq_n_f32(m[4]);
float32x4_t v_m5 = vdupq_n_f32(m[5]);
if (borderMode == BORDER_MODE_REPLICATE)
{
int32x4_t v_zero4 = vdupq_n_s32(0);
for (size_t i = 0; i < dsize.height; i += BLOCK_SIZE)
{
size_t blockHeight = std::min<size_t>(BLOCK_SIZE, dsize.height - i);
for (size_t j = 0; j < dsize.width; j += BLOCK_SIZE)
{
size_t blockWidth = std::min<size_t>(BLOCK_SIZE, dsize.width - j);
// compute table
for (size_t y = 0; y < blockHeight; ++y)
{
s32 * map_row = getRowPtr(map, blockWidth * sizeof(s32) * 4, y);
f32 * coeff_row = getRowPtr(coeffs, blockWidth * sizeof(f32) * 2, y);
size_t x = 0, y_ = y + i;
f32 indeces[4] = { j + 0.0f, j + 1.0f, j + 2.0f, j + 3.0f };
float32x4_t v_x = vld1q_f32(indeces), v_y = vdupq_n_f32(y_), v_4 = vdupq_n_f32(4.0f);
float32x4_t v_yx = vmlaq_f32(v_m4, v_m2, v_y), v_yy = vmlaq_f32(v_m5, v_m3, v_y);
for ( ; x + 4 <= blockWidth; x += 4)
{
float32x4_t v_src_xf = vmlaq_f32(v_yx, v_m0, v_x);
float32x4_t v_src_yf = vmlaq_f32(v_yy, v_m1, v_x);
int32x4_t v_src_x = vcvtq_s32_f32(v_src_xf);
int32x4_t v_src_y = vcvtq_s32_f32(v_src_yf);
float32x4x2_t v_coeff;
v_coeff.val[0] = vsubq_f32(v_src_xf, vcvtq_f32_s32(v_src_x));
v_coeff.val[1] = vsubq_f32(v_src_yf, vcvtq_f32_s32(v_src_y));
uint32x4_t v_maskx = vcltq_f32(v_coeff.val[0], v_zero4f);
uint32x4_t v_masky = vcltq_f32(v_coeff.val[1], v_zero4f);
v_coeff.val[0] = vbslq_f32(v_maskx, vaddq_f32(v_one4f, v_coeff.val[0]), v_coeff.val[0]);
v_coeff.val[1] = vbslq_f32(v_masky, vaddq_f32(v_one4f, v_coeff.val[1]), v_coeff.val[1]);
v_src_x = vbslq_s32(v_maskx, vsubq_s32(v_src_x, v_1), v_src_x);
v_src_y = vbslq_s32(v_masky, vsubq_s32(v_src_y, v_1), v_src_y);
int32x4_t v_dst0_x = vmaxq_s32(v_zero4, vminq_s32(v_width4, v_src_x));
int32x4_t v_dst0_y = vmaxq_s32(v_zero4, vminq_s32(v_height4, v_src_y));
int32x4_t v_dst1_x = vmaxq_s32(v_zero4, vminq_s32(v_width4, vaddq_s32(v_1, v_src_x)));
int32x4_t v_dst1_y = vmaxq_s32(v_zero4, vminq_s32(v_height4, vaddq_s32(v_1, v_src_y)));
int32x4x4_t v_dst_index;
v_dst_index.val[0] = vmlaq_s32(v_dst0_x, v_dst0_y, v_step4);
v_dst_index.val[1] = vmlaq_s32(v_dst1_x, v_dst0_y, v_step4);
v_dst_index.val[2] = vmlaq_s32(v_dst0_x, v_dst1_y, v_step4);
v_dst_index.val[3] = vmlaq_s32(v_dst1_x, v_dst1_y, v_step4);
vst2q_f32(coeff_row + (x << 1), v_coeff);
vst4q_s32(map_row + (x << 2), v_dst_index);
v_x = vaddq_f32(v_x, v_4);
}
f32 yx = m[2] * y_ + m[4], yy = m[3] * y_ + m[5];
for (ptrdiff_t x_ = x + j; x < blockWidth; ++x, ++x_)
{
f32 src_x_f = m[0] * x_ + yx;
f32 src_y_f = m[1] * x_ + yy;
s32 src0_x = (s32)floorf(src_x_f);
s32 src0_y = (s32)floorf(src_y_f);
coeff_row[(x << 1) + 0] = src_x_f - src0_x;
coeff_row[(x << 1) + 1] = src_y_f - src0_y;
s32 src1_y = std::max(0, std::min<s32>(ssize.height - 1, src0_y + 1));
src0_y = std::max(0, std::min<s32>(ssize.height - 1, src0_y));
s32 src1_x = std::max(0, std::min<s32>(ssize.width - 1, src0_x + 1));
src0_x = std::max(0, std::min<s32>(ssize.width - 1, src0_x));
map_row[(x << 2) + 0] = src0_y * srcStride + src0_x;
map_row[(x << 2) + 1] = src0_y * srcStride + src1_x;
map_row[(x << 2) + 2] = src1_y * srcStride + src0_x;
map_row[(x << 2) + 3] = src1_y * srcStride + src1_x;
}
}
remapLinearReplicate(Size2D(blockWidth, blockHeight),
srcBase, &map[0], &coeffs[0],
getRowPtr(dstBase, dstStride, i) + j, dstStride);
}
}
}
else if (borderMode == BORDER_MODE_CONSTANT)
{
float32x4_t v_zero4 = vdupq_n_f32(0.0f);
int32x4_t v_m1_4 = vdupq_n_s32(-1);
for (size_t i = 0; i < dsize.height; i += BLOCK_SIZE)
{
size_t blockHeight = std::min<size_t>(BLOCK_SIZE, dsize.height - i);
for (size_t j = 0; j < dsize.width; j += BLOCK_SIZE)
{
size_t blockWidth = std::min<size_t>(BLOCK_SIZE, dsize.width - j);
// compute table
for (size_t y = 0; y < blockHeight; ++y)
{
s32 * map_row = getRowPtr(map, blockWidth * sizeof(s32) * 4, y);
f32 * coeff_row = getRowPtr(coeffs, blockWidth * sizeof(f32) * 2, y);
size_t x = 0, y_ = y + i;
f32 indeces[4] = { j + 0.0f, j + 1.0f, j + 2.0f, j + 3.0f };
float32x4_t v_x = vld1q_f32(indeces), v_y = vdupq_n_f32(y_), v_4 = vdupq_n_f32(4.0f);
float32x4_t v_yx = vmlaq_f32(v_m4, v_m2, v_y), v_yy = vmlaq_f32(v_m5, v_m3, v_y);
for ( ; x + 4 <= blockWidth; x += 4)
{
float32x4_t v_src_xf = vmlaq_f32(v_yx, v_m0, v_x);
float32x4_t v_src_yf = vmlaq_f32(v_yy, v_m1, v_x);
int32x4_t v_src_x0 = vcvtq_s32_f32(v_src_xf);
int32x4_t v_src_y0 = vcvtq_s32_f32(v_src_yf);
float32x4x2_t v_coeff;
v_coeff.val[0] = vsubq_f32(v_src_xf, vcvtq_f32_s32(v_src_x0));
v_coeff.val[1] = vsubq_f32(v_src_yf, vcvtq_f32_s32(v_src_y0));
uint32x4_t v_maskx = vcltq_f32(v_coeff.val[0], v_zero4f);
uint32x4_t v_masky = vcltq_f32(v_coeff.val[1], v_zero4f);
v_coeff.val[0] = vbslq_f32(v_maskx, vaddq_f32(v_one4f, v_coeff.val[0]), v_coeff.val[0]);
v_coeff.val[1] = vbslq_f32(v_masky, vaddq_f32(v_one4f, v_coeff.val[1]), v_coeff.val[1]);
v_src_x0 = vbslq_s32(v_maskx, vsubq_s32(v_src_x0, v_1), v_src_x0);
v_src_y0 = vbslq_s32(v_masky, vsubq_s32(v_src_y0, v_1), v_src_y0);
int32x4_t v_src_x1 = vaddq_s32(v_src_x0, v_1);
int32x4_t v_src_y1 = vaddq_s32(v_src_y0, v_1);
int32x4x4_t v_dst_index;
v_dst_index.val[0] = vmlaq_s32(v_src_x0, v_src_y0, v_step4);
v_dst_index.val[1] = vmlaq_s32(v_src_x1, v_src_y0, v_step4);
v_dst_index.val[2] = vmlaq_s32(v_src_x0, v_src_y1, v_step4);
v_dst_index.val[3] = vmlaq_s32(v_src_x1, v_src_y1, v_step4);
uint32x4_t v_mask_x0 = vandq_u32(vcgeq_f32(v_src_xf, v_zero4), vcleq_s32(v_src_x0, v_width4));
uint32x4_t v_mask_x1 = vandq_u32(vcgeq_f32(vaddq_f32(v_src_xf, v_one4f), v_zero4), vcleq_s32(v_src_x1, v_width4));
uint32x4_t v_mask_y0 = vandq_u32(vcgeq_f32(v_src_yf, v_zero4), vcleq_s32(v_src_y0, v_height4));
uint32x4_t v_mask_y1 = vandq_u32(vcgeq_f32(vaddq_f32(v_src_yf, v_one4f), v_zero4), vcleq_s32(v_src_y1, v_height4));
v_dst_index.val[0] = vbslq_s32(vandq_u32(v_mask_x0, v_mask_y0), v_dst_index.val[0], v_m1_4);
v_dst_index.val[1] = vbslq_s32(vandq_u32(v_mask_x1, v_mask_y0), v_dst_index.val[1], v_m1_4);
v_dst_index.val[2] = vbslq_s32(vandq_u32(v_mask_x0, v_mask_y1), v_dst_index.val[2], v_m1_4);
v_dst_index.val[3] = vbslq_s32(vandq_u32(v_mask_x1, v_mask_y1), v_dst_index.val[3], v_m1_4);
vst2q_f32(coeff_row + (x << 1), v_coeff);
vst4q_s32(map_row + (x << 2), v_dst_index);
v_x = vaddq_f32(v_x, v_4);
}
f32 yx = m[2] * y_ + m[4], yy = m[3] * y_ + m[5];
for (ptrdiff_t x_ = x + j; x < blockWidth; ++x, ++x_)
{
f32 src_x_f = m[0] * x_ + yx;
f32 src_y_f = m[1] * x_ + yy;
s32 src0_x = (s32)floorf(src_x_f), src1_x = src0_x + 1;
s32 src0_y = (s32)floorf(src_y_f), src1_y = src0_y + 1;
coeff_row[(x << 1) + 0] = src_x_f - src0_x;
coeff_row[(x << 1) + 1] = src_y_f - src0_y;
map_row[(x << 2) + 0] = (src0_x >= 0) && (src0_x < (s32)ssize.width) &&
(src0_y >= 0) && (src0_y < (s32)ssize.height) ? src0_y * srcStride + src0_x : -1;
map_row[(x << 2) + 1] = (src1_x >= 0) && (src1_x < (s32)ssize.width) &&
(src0_y >= 0) && (src0_y < (s32)ssize.height) ? src0_y * srcStride + src1_x : -1;
map_row[(x << 2) + 2] = (src0_x >= 0) && (src0_x < (s32)ssize.width) &&
(src1_y >= 0) && (src1_y < (s32)ssize.height) ? src1_y * srcStride + src0_x : -1;
map_row[(x << 2) + 3] = (src1_x >= 0) && (src1_x < (s32)ssize.width) &&
(src1_y >= 0) && (src1_y < (s32)ssize.height) ? src1_y * srcStride + src1_x : -1;
}
}
remapLinearConst(Size2D(blockWidth, blockHeight),
srcBase, &map[0], &coeffs[0],
getRowPtr(dstBase, dstStride, i) + j, dstStride, borderValue);
}
}
}
#else
(void)ssize;
(void)dsize;
(void)srcBase;
(void)srcStride;
(void)m;
(void)dstBase;
(void)dstStride;
(void)borderMode;
(void)borderValue;
#endif
}
} // namespace CAROTENE_NS