import numpy as np
import cv2 as cv
import argparse
import os
'''
You can download the converted onnx model from https : / / drive . google . com / drive / folders / 1 wLtxyao4ItAg8tt4Sb63zt6qXzhcQoR6 ? usp = sharing
or convert the model yourself .
You can get the original pre - trained Jasper model from NVIDIA : https : / / ngc . nvidia . com / catalog / models / nvidia : jasper_pyt_onnx_fp16_amp / files
Download and unzip : ` $ wget - - content - disposition https : / / api . ngc . nvidia . com / v2 / models / nvidia / jasper_pyt_onnx_fp16_amp / versions / 20.10 .0 / zip - O jasper_pyt_onnx_fp16_amp_20 .10 .0 . zip & & unzip - o . / jasper_pyt_onnx_fp16_amp_20 .10 .0 . zip & & unzip - o . / jasper_pyt_onnx_fp16_amp . zip `
you can get the script to convert the model here : https : / / gist . github . com / spazewalker / 507 f1529e19aea7e8417f6e935851a01
You can convert the model using the following steps :
1. Import onnx and load the original model
` ` `
import onnx
model = onnx . load ( " ./jasper-onnx/1/model.onnx " )
` ` `
3. Change data type of input layer
` ` `
inp = model . graph . input [ 0 ]
model . graph . input . remove ( inp )
inp . type . tensor_type . elem_type = 1
model . graph . input . insert ( 0 , inp )
` ` `
4. Change the data type of output layer
` ` `
out = model . graph . output [ 0 ]
model . graph . output . remove ( out )
out . type . tensor_type . elem_type = 1
model . graph . output . insert ( 0 , out )
` ` `
5. Change the data type of every initializer and cast it ' s values from FP16 to FP32
` ` `
for i , init in enumerate ( model . graph . initializer ) :
model . graph . initializer . remove ( init )
init . data_type = 1
init . raw_data = np . frombuffer ( init . raw_data , count = np . product ( init . dims ) , dtype = np . float16 ) . astype ( np . float32 ) . tobytes ( )
model . graph . initializer . insert ( i , init )
` ` `
6. Add an additional reshape node to handle the inconsistant input from python and c + + of openCV .
see https : / / github . com / opencv / opencv / issues / 19091
Make & insert a new node with ' Reshape ' operation & required initializer
` ` `
tensor = numpy_helper . from_array ( np . array ( [ 0 , 64 , - 1 ] ) , name = ' shape_reshape ' )
model . graph . initializer . insert ( 0 , tensor )
node = onnx . helper . make_node ( op_type = ' Reshape ' , inputs = [ ' input__0 ' , ' shape_reshape ' ] , outputs = [ ' input_reshaped ' ] , name = ' reshape__0 ' )
model . graph . node . insert ( 0 , node )
model . graph . node [ 1 ] . input [ 0 ] = ' input_reshaped '
` ` `
7. Finally save the model
` ` `
with open ( ' jasper_dynamic_input_float.onnx ' , ' wb ' ) as f :
onnx . save_model ( model , f )
` ` `
Original Repo : https : / / github . com / NVIDIA / DeepLearningExamples / tree / master / PyTorch / SpeechRecognition / Jasper
'''
class FilterbankFeatures :
def __init__ ( self ,
sample_rate = 16000 , window_size = 0.02 , window_stride = 0.01 ,
n_fft = 512 , preemph = 0.97 , n_filt = 64 , lowfreq = 0 ,
highfreq = None , log = True , dither = 1e-5 ) :
'''
Initializes pre - processing class . Default values are the values used by the Jasper
architecture for pre - processing . For more details , refer to the paper here :
https : / / arxiv . org / abs / 1904.03288
'''
self . win_length = int ( sample_rate * window_size ) # frame size
self . hop_length = int ( sample_rate * window_stride ) # stride
self . n_fft = n_fft or 2 * * np . ceil ( np . log2 ( self . win_length ) )
self . log = log
self . dither = dither
self . n_filt = n_filt
self . preemph = preemph
highfreq = highfreq or sample_rate / 2
self . window_tensor = np . hanning ( self . win_length )
self . filterbanks = self . mel ( sample_rate , self . n_fft , n_mels = n_filt , fmin = lowfreq , fmax = highfreq )
self . filterbanks . dtype = np . float32
self . filterbanks = np . expand_dims ( self . filterbanks , 0 )
def normalize_batch ( self , x , seq_len ) :
'''
Normalizes the features .
'''
x_mean = np . zeros ( ( seq_len . shape [ 0 ] , x . shape [ 1 ] ) , dtype = x . dtype )
x_std = np . zeros ( ( seq_len . shape [ 0 ] , x . shape [ 1 ] ) , dtype = x . dtype )
for i in range ( x . shape [ 0 ] ) :
x_mean [ i , : ] = np . mean ( x [ i , : , : seq_len [ i ] ] , axis = 1 )
x_std [ i , : ] = np . std ( x [ i , : , : seq_len [ i ] ] , axis = 1 )
# make sure x_std is not zero
x_std + = 1e-10
return ( x - np . expand_dims ( x_mean , 2 ) ) / np . expand_dims ( x_std , 2 )
def calculate_features ( self , x , seq_len ) :
'''
Calculates filterbank features .
args :
x : mono channel audio
seq_len : length of the audio sample
returns :
x : filterbank features
'''
dtype = x . dtype
seq_len = np . ceil ( seq_len / self . hop_length )
seq_len = np . array ( seq_len , dtype = np . int32 )
# dither
if self . dither > 0 :
x + = self . dither * np . random . randn ( * x . shape )
# do preemphasis
if self . preemph is not None :
x = np . concatenate (
( np . expand_dims ( x [ 0 ] , - 1 ) , x [ 1 : ] - self . preemph * x [ : - 1 ] ) , axis = 0 )
# Short Time Fourier Transform
x = self . stft ( x , n_fft = self . n_fft , hop_length = self . hop_length ,
win_length = self . win_length ,
fft_window = self . window_tensor )
# get power spectrum
x = ( x * * 2 ) . sum ( - 1 )
# dot with filterbank energies
x = np . matmul ( np . array ( self . filterbanks , dtype = x . dtype ) , x )
# log features if required
if self . log :
x = np . log ( x + 1e-20 )
# normalize if required
x = self . normalize_batch ( x , seq_len ) . astype ( dtype )
return x
# Mel Frequency calculation
def hz_to_mel ( self , frequencies ) :
'''
Converts frequencies from hz to mel scale . Input can be a number or a vector .
'''
frequencies = np . asanyarray ( frequencies )
f_min = 0.0
f_sp = 200.0 / 3
mels = ( frequencies - f_min ) / f_sp
# Fill in the log-scale part
min_log_hz = 1000.0 # beginning of log region (Hz)
min_log_mel = ( min_log_hz - f_min ) / f_sp # same (Mels)
logstep = np . log ( 6.4 ) / 27.0 # step size for log region
if frequencies . ndim :
# If we have array data, vectorize
log_t = frequencies > = min_log_hz
mels [ log_t ] = min_log_mel + np . log ( frequencies [ log_t ] / min_log_hz ) / logstep
elif frequencies > = min_log_hz :
# If we have scalar data, directly
mels = min_log_mel + np . log ( frequencies / min_log_hz ) / logstep
return mels
def mel_to_hz ( self , mels ) :
'''
Converts frequencies from mel to hz scale . Input can be a number or a vector .
'''
mels = np . asanyarray ( mels )
# Fill in the linear scale
f_min = 0.0
f_sp = 200.0 / 3
freqs = f_min + f_sp * mels
# And now the nonlinear scale
min_log_hz = 1000.0 # beginning of log region (Hz)
min_log_mel = ( min_log_hz - f_min ) / f_sp # same (Mels)
logstep = np . log ( 6.4 ) / 27.0 # step size for log region
if mels . ndim :
# If we have vector data, vectorize
log_t = mels > = min_log_mel
freqs [ log_t ] = min_log_hz * np . exp ( logstep * ( mels [ log_t ] - min_log_mel ) )
elif mels > = min_log_mel :
# If we have scalar data, check directly
freqs = min_log_hz * np . exp ( logstep * ( mels - min_log_mel ) )
return freqs
def mel_frequencies ( self , n_mels = 128 , fmin = 0.0 , fmax = 11025.0 ) :
'''
Calculates n mel frequencies between 2 frequencies
args :
n_mels : number of bands
fmin : min frequency
fmax : max frequency
returns :
mels : vector of mel frequencies
'''
# 'Center freqs' of mel bands - uniformly spaced between limits
min_mel = self . hz_to_mel ( fmin )
max_mel = self . hz_to_mel ( fmax )
mels = np . linspace ( min_mel , max_mel , n_mels )
return self . mel_to_hz ( mels )
def mel ( self , sr , n_fft , n_mels = 128 , fmin = 0.0 , fmax = None , dtype = np . float32 ) :
'''
Generates mel filterbank
args :
sr : Sampling rate
n_fft : number of FFT components
n_mels : number of Mel bands to generate
fmin : lowest frequency ( in Hz )
fmax : highest frequency ( in Hz ) . sr / 2.0 if None
dtype : the data type of the output basis .
returns :
mels : Mel transform matrix
'''
# default Max freq = half of sampling rate
if fmax is None :
fmax = float ( sr ) / 2
# Initialize the weights
n_mels = int ( n_mels )
weights = np . zeros ( ( n_mels , int ( 1 + n_fft / / 2 ) ) , dtype = dtype )
# Center freqs of each FFT bin
fftfreqs = np . linspace ( 0 , float ( sr ) / 2 , int ( 1 + n_fft / / 2 ) , endpoint = True )
# 'Center freqs' of mel bands - uniformly spaced between limits
mel_f = self . mel_frequencies ( n_mels + 2 , fmin = fmin , fmax = fmax )
fdiff = np . diff ( mel_f )
ramps = np . subtract . outer ( mel_f , fftfreqs )
for i in range ( n_mels ) :
# lower and upper slopes for all bins
lower = - ramps [ i ] / fdiff [ i ]
upper = ramps [ i + 2 ] / fdiff [ i + 1 ]
# .. then intersect them with each other and zero
weights [ i ] = np . maximum ( 0 , np . minimum ( lower , upper ) )
# Using Slaney-style mel which is scaled to be approx constant energy per channel
enorm = 2.0 / ( mel_f [ 2 : n_mels + 2 ] - mel_f [ : n_mels ] )
weights * = enorm [ : , np . newaxis ]
return weights
# STFT preperation
def pad_window_center ( self , data , size , axis = - 1 , * * kwargs ) :
'''
Centers the data and pads .
args :
data : Vector to be padded and centered
size : Length to pad data
axis : Axis along which to pad and center the data
kwargs : arguments passed to np . pad
return : centered and padded data
'''
kwargs . setdefault ( " mode " , " constant " )
n = data . shape [ axis ]
lpad = int ( ( size - n ) / / 2 )
lengths = [ ( 0 , 0 ) ] * data . ndim
lengths [ axis ] = ( lpad , int ( size - n - lpad ) )
if lpad < 0 :
raise Exception (
( " Target size ( {:d} ) must be at least input size ( {:d} ) " ) . format ( size , n )
)
return np . pad ( data , lengths , * * kwargs )
def frame ( self , x , frame_length , hop_length ) :
'''
Slices a data array into ( overlapping ) frames .
args :
x : array to frame
frame_length : length of frame
hop_length : Number of steps to advance between frames
return : A framed view of ` x `
'''
if x . shape [ - 1 ] < frame_length :
raise Exception (
" Input is too short (n= {:d} ) "
" for frame_length= {:d} " . format ( x . shape [ - 1 ] , frame_length )
)
x = np . asfortranarray ( x )
n_frames = 1 + ( x . shape [ - 1 ] - frame_length ) / / hop_length
strides = np . asarray ( x . strides )
new_stride = np . prod ( strides [ strides > 0 ] / / x . itemsize ) * x . itemsize
shape = list ( x . shape ) [ : - 1 ] + [ frame_length , n_frames ]
strides = list ( strides ) + [ hop_length * new_stride ]
return np . lib . stride_tricks . as_strided ( x , shape = shape , strides = strides )
def dtype_r2c ( self , d , default = np . complex64 ) :
'''
Find the complex numpy dtype corresponding to a real dtype .
args :
d : The real - valued dtype to convert to complex .
default : The default complex target type , if ` d ` does not match a known dtype
return : The complex dtype
'''
mapping = {
np . dtype ( np . float32 ) : np . complex64 ,
np . dtype ( np . float64 ) : np . complex128 ,
}
dt = np . dtype ( d )
if dt . kind == " c " :
return dt
return np . dtype ( mapping . get ( dt , default ) )
def stft ( self , y , n_fft , hop_length = None , win_length = None , fft_window = None , pad_mode = ' reflect ' , return_complex = False ) :
'''
Short Time Fourier Transform . The STFT represents a signal in the time - frequency
domain by computing discrete Fourier transforms ( DFT ) over short overlapping windows .
args :
y : input signal
n_fft : length of the windowed signal after padding with zeros .
hop_length : number of audio samples between adjacent STFT columns .
win_length : Each frame of audio is windowed by window of length win_length and
then padded with zeros to match n_fft
fft_window : a vector or array of length ` n_fft ` having values computed by a
window function
pad_mode : mode while padding the singnal
return_complex : returns array with complex data type if ` True `
return : Matrix of short - term Fourier transform coefficients .
'''
if win_length is None :
win_length = n_fft
if hop_length is None :
hop_length = int ( win_length / / 4 )
if y . ndim != 1 :
raise Exception ( f ' Invalid input shape. Only Mono Channeled audio supported. Input must have shape (Audio,). Got { y . shape } ' )
# Pad the window out to n_fft size
fft_window = self . pad_window_center ( fft_window , n_fft )
# Reshape so that the window can be broadcast
fft_window = fft_window . reshape ( ( - 1 , 1 ) )
# Pad the time series so that frames are centered
y = np . pad ( y , int ( n_fft / / 2 ) , mode = pad_mode )
# Window the time series.
y_frames = self . frame ( y , frame_length = n_fft , hop_length = hop_length )
# Convert data type to complex
dtype = self . dtype_r2c ( y . dtype )
# Pre-allocate the STFT matrix
stft_matrix = np . empty ( ( int ( 1 + n_fft / / 2 ) , y_frames . shape [ - 1 ] ) , dtype = dtype , order = " F " )
stft_matrix = np . fft . rfft ( fft_window * y_frames , axis = 0 )
return stft_matrix if return_complex == True else np . stack ( ( stft_matrix . real , stft_matrix . imag ) , axis = - 1 )
class Decoder :
'''
Used for decoding the output of jasper model .
'''
def __init__ ( self ) :
labels = [ ' ' , ' a ' , ' b ' , ' c ' , ' d ' , ' e ' , ' f ' , ' g ' , ' h ' , ' i ' , ' j ' , ' k ' , ' l ' , ' m ' , ' n ' , ' o ' , ' p ' , ' q ' , ' r ' , ' s ' , ' t ' , ' u ' , ' v ' , ' w ' , ' x ' , ' y ' , ' z ' , " ' " ]
self . labels_map = { i : label for i , label in enumerate ( labels ) }
self . blank_id = 28
def decode ( self , x ) :
"""
Takes output of Jasper model and performs ctc decoding algorithm to
remove duplicates and special symbol . Returns prediction
"""
x = np . argmax ( x , axis = - 1 )
hypotheses = [ ]
prediction = x . tolist ( )
# CTC decoding procedure
decoded_prediction = [ ]
previous = self . blank_id
for p in prediction :
if ( p != previous or previous == self . blank_id ) and p != self . blank_id :
decoded_prediction . append ( p )
previous = p
hypothesis = ' ' . join ( [ self . labels_map [ c ] for c in decoded_prediction ] )
hypotheses . append ( hypothesis )
return hypotheses
def predict ( features , net , decoder ) :
'''
Passes the features through the Jasper model and decodes the output to english transcripts .
args :
features : input features , calculated using FilterbankFeatures class
net : Jasper model dnn . net object
decoder : Decoder object
return : Predicted text
'''
# make prediction
net . setInput ( features )
output = net . forward ( )
# decode output to transcript
prediction = decoder . decode ( output . squeeze ( 0 ) )
return prediction [ 0 ]
def readAudioFile ( file , audioStream ) :
cap = cv . VideoCapture ( file )
samplingRate = 16000
params = np . asarray ( [ cv . CAP_PROP_AUDIO_STREAM , audioStream ,
cv . CAP_PROP_VIDEO_STREAM , - 1 ,
cv . CAP_PROP_AUDIO_DATA_DEPTH , cv . CV_32F ,
cv . CAP_PROP_AUDIO_SAMPLES_PER_SECOND , samplingRate
] )
cap . open ( file , cv . CAP_ANY , params )
if cap . isOpened ( ) is False :
print ( " Error : Can ' t read audio file: " , file , " with audioStream = " , audioStream )
return
audioBaseIndex = int ( cap . get ( cv . CAP_PROP_AUDIO_BASE_INDEX ) )
inputAudio = [ ]
while ( 1 ) :
if ( cap . grab ( ) ) :
frame = np . asarray ( [ ] )
frame = cap . retrieve ( frame , audioBaseIndex )
for i in range ( len ( frame [ 1 ] [ 0 ] ) ) :
inputAudio . append ( frame [ 1 ] [ 0 ] [ i ] )
else :
break
inputAudio = np . asarray ( inputAudio , dtype = np . float64 )
return inputAudio , samplingRate
def readAudioMicrophone ( microTime ) :
cap = cv . VideoCapture ( )
samplingRate = 16000
params = np . asarray ( [ cv . CAP_PROP_AUDIO_STREAM , 0 ,
cv . CAP_PROP_VIDEO_STREAM , - 1 ,
cv . CAP_PROP_AUDIO_DATA_DEPTH , cv . CV_32F ,
cv . CAP_PROP_AUDIO_SAMPLES_PER_SECOND , samplingRate
] )
cap . open ( 0 , cv . CAP_ANY , params )
if cap . isOpened ( ) is False :
print ( " Error: Can ' t open microphone " )
print ( " Error: problems with audio reading, check input arguments " )
return
audioBaseIndex = int ( cap . get ( cv . CAP_PROP_AUDIO_BASE_INDEX ) )
cvTickFreq = cv . getTickFrequency ( )
sysTimeCurr = cv . getTickCount ( )
sysTimePrev = sysTimeCurr
inputAudio = [ ]
while ( ( sysTimeCurr - sysTimePrev ) / cvTickFreq < microTime ) :
if ( cap . grab ( ) ) :
frame = np . asarray ( [ ] )
frame = cap . retrieve ( frame , audioBaseIndex )
for i in range ( len ( frame [ 1 ] [ 0 ] ) ) :
inputAudio . append ( frame [ 1 ] [ 0 ] [ i ] )
sysTimeCurr = cv . getTickCount ( )
else :
print ( " Error: Grab error " )
break
inputAudio = np . asarray ( inputAudio , dtype = np . float64 )
print ( " Number of samples: " , len ( inputAudio ) )
return inputAudio , samplingRate
if __name__ == ' __main__ ' :
# Computation backends supported by layers
backends = ( cv . dnn . DNN_BACKEND_DEFAULT , cv . dnn . DNN_BACKEND_INFERENCE_ENGINE , cv . dnn . DNN_BACKEND_OPENCV )
# Target Devices for computation
targets = ( cv . dnn . DNN_TARGET_CPU , cv . dnn . DNN_TARGET_OPENCL , cv . dnn . DNN_TARGET_OPENCL_FP16 )
parser = argparse . ArgumentParser ( description = ' This script runs Jasper Speech recognition model ' ,
formatter_class = argparse . ArgumentDefaultsHelpFormatter )
parser . add_argument ( ' --input_type ' , type = str , required = True , help = ' file or microphone ' )
parser . add_argument ( ' --micro_time ' , type = int , default = 15 , help = ' Duration of microphone work in seconds. Must be more than 6 sec ' )
parser . add_argument ( ' --input_audio ' , type = str , help = ' Path to input audio file. OR Path to a txt file with relative path to multiple audio files in different lines ' )
parser . add_argument ( ' --audio_stream ' , type = int , default = 0 , help = ' CAP_PROP_AUDIO_STREAM value ' )
parser . add_argument ( ' --show_spectrogram ' , action = ' store_true ' , help = ' Whether to show a spectrogram of the input audio. ' )
parser . add_argument ( ' --model ' , type = str , default = ' jasper.onnx ' , help = ' Path to the onnx file of Jasper. default= " jasper.onnx " ' )
parser . add_argument ( ' --output ' , type = str , help = ' Path to file where recognized audio transcript must be saved. Leave this to print on console. ' )
parser . add_argument ( ' --backend ' , choices = backends , default = cv . dnn . DNN_BACKEND_DEFAULT , type = int ,
help = ' Select a computation backend: '
" %d : automatically (by default) "
" %d : OpenVINO Inference Engine "
" %d : OpenCV Implementation " % backends )
parser . add_argument ( ' --target ' , choices = targets , default = cv . dnn . DNN_TARGET_CPU , type = int ,
help = ' Select a target device: '
" %d : CPU target (by default) "
" %d : OpenCL "
" %d : OpenCL FP16 " % targets )
args , _ = parser . parse_known_args ( )
if args . input_audio and not os . path . isfile ( args . input_audio ) :
raise OSError ( " Input audio file does not exist " )
if not os . path . isfile ( args . model ) :
raise OSError ( " Jasper model file does not exist " )
features = [ ]
if args . input_type == " file " :
if args . input_audio . endswith ( ' .txt ' ) :
with open ( args . input_audio ) as f :
content = f . readlines ( )
content = [ x . strip ( ) for x in content ]
audio_file_paths = content
for audio_file_path in audio_file_paths :
if not os . path . isfile ( audio_file_path ) :
raise OSError ( " Audio file( {audio_file_path} ) does not exist " )
else :
audio_file_paths = [ args . input_audio ]
audio_file_paths = [ os . path . abspath ( x ) for x in audio_file_paths ]
# Read audio Files
for audio_file_path in audio_file_paths :
audio = readAudioFile ( audio_file_path , args . audio_stream )
if audio is None :
raise Exception ( f " Can ' t read { args . input_audio } . Try a different format " )
features . append ( audio [ 0 ] )
elif args . input_type == " microphone " :
# Read audio from microphone
audio = readAudioMicrophone ( args . micro_time )
if audio is None :
raise Exception ( f " Can ' t open microphone. Try a different format " )
features . append ( audio [ 0 ] )
else :
raise Exception ( f " input_type { args . input_type } doesn ' t exist. Please enter ' file ' or ' microphone ' " )
# Get Filterbank Features
feature_extractor = FilterbankFeatures ( )
for i in range ( len ( features ) ) :
X = features [ i ]
seq_len = np . array ( [ X . shape [ 0 ] ] , dtype = np . int32 )
features [ i ] = feature_extractor . calculate_features ( x = X , seq_len = seq_len )
# Load Network
net = cv . dnn . readNetFromONNX ( args . model )
net . setPreferableBackend ( args . backend )
net . setPreferableTarget ( args . target )
# Show spectogram if required
if args . show_spectrogram and not args . input_audio . endswith ( ' .txt ' ) :
img = cv . normalize ( src = features [ 0 ] [ 0 ] , dst = None , alpha = 0 , beta = 255 , norm_type = cv . NORM_MINMAX , dtype = cv . CV_8U )
img = cv . applyColorMap ( img , cv . COLORMAP_JET )
cv . imshow ( ' spectogram ' , img )
cv . waitKey ( 0 )
# Initialize decoder
decoder = Decoder ( )
# Make prediction
prediction = [ ]
print ( " Predicting... " )
for feature in features :
print ( f " \r Audio file { len ( prediction ) + 1 } / { len ( features ) } " , end = ' ' )
prediction . append ( predict ( feature , net , decoder ) )
print ( " " )
# save transcript if required
if args . output :
with open ( args . output , ' w ' ) as f :
for pred in prediction :
f . write ( pred + ' \n ' )
print ( " Transcript was written to {} " . format ( args . output ) )
else :
print ( prediction )
cv . destroyAllWindows ( )