mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
100 lines
3.5 KiB
100 lines
3.5 KiB
4 years ago
|
#!/usr/bin/env python3
|
||
|
|
||
|
import sys
|
||
|
import subprocess
|
||
|
import re
|
||
|
from enum import Enum
|
||
|
|
||
|
## Helper functions ##################################################
|
||
|
##
|
||
|
def fmt_bool(x):
|
||
|
return ("true" if x else "false")
|
||
|
|
||
|
def fmt_bin(base, prec, model):
|
||
|
return "%s/%s/%s/%s.xml" % (base, model, prec, model)
|
||
|
|
||
|
## The script itself #################################################
|
||
|
##
|
||
|
if len(sys.argv) != 3:
|
||
|
print("Usage: %s /path/to/input/video /path/to/models" % sys.argv[0])
|
||
|
exit(1)
|
||
|
|
||
|
input_file_path = sys.argv[1]
|
||
|
intel_models_path = sys.argv[2]
|
||
|
|
||
|
app = "bin/example_gapi_privacy_masking_camera"
|
||
|
intel_fd_model = "face-detection-retail-0005"
|
||
|
intel_lpd_model = "vehicle-license-plate-detection-barrier-0106"
|
||
|
output_file = "out_results.csv"
|
||
|
|
||
|
tgts = [ ("CPU", "INT8")
|
||
|
, ("CPU", "FP32")
|
||
|
, ("GPU", "FP16")
|
||
|
]
|
||
|
|
||
|
class Policy(Enum):
|
||
|
Traditional = 1
|
||
|
Streaming = 2
|
||
|
|
||
|
# From mode to cmd arg
|
||
|
mods = [ (Policy.Traditional, True)
|
||
|
, (Policy.Streaming, False)
|
||
|
]
|
||
|
|
||
|
class UI(Enum):
|
||
|
With = 1
|
||
|
Without = 2
|
||
|
|
||
|
# From mode to cmd arg
|
||
|
ui = [ (UI.With, False)
|
||
|
, (UI.Without, True)
|
||
|
]
|
||
|
|
||
|
fd_fmt_bin = lambda prec : fmt_bin(intel_models_path, prec, intel_fd_model)
|
||
|
lpd_fmt_bin = lambda prec : fmt_bin(intel_models_path, prec, intel_lpd_model)
|
||
|
|
||
|
# Performance comparison table
|
||
|
table={}
|
||
|
|
||
|
# Collect the performance data
|
||
|
for m in mods: # Execution mode (trad/stream)
|
||
|
for u in ui: # UI mode (on/off)
|
||
|
for f in tgts: # FD model
|
||
|
for p in tgts: # LPD model
|
||
|
cmd = [ app
|
||
|
, ("--input=%s" % input_file_path) # input file
|
||
|
, ("--faced=%s" % f[0]) # FD device target
|
||
|
, ("--facem=%s" % fd_fmt_bin(f[1])) # FD model @ precision
|
||
|
, ("--platd=%s" % p[0]) # LPD device target
|
||
|
, ("--platm=%s" % lpd_fmt_bin(p[1])) # LPD model @ precision
|
||
|
, ("--trad=%s" % fmt_bool(m[1])) # Execution policy
|
||
|
, ("--noshow=%s" % fmt_bool(u[1])) # UI mode (show/no show)
|
||
|
]
|
||
|
out = str(subprocess.check_output(cmd))
|
||
|
match = re.search('Processed [0-9]+ frames \(([0-9]+\.[0-9]+) FPS\)', out)
|
||
|
fps = float(match.group(1))
|
||
|
print(cmd, fps, "FPS")
|
||
|
table[m[0],u[0],f,p] = fps
|
||
|
|
||
|
# Write the performance summary
|
||
|
# Columns: all other components (mode, ui)
|
||
|
with open(output_file, 'w') as csv:
|
||
|
# CSV header
|
||
|
csv.write("FD,LPD,Serial(UI),Serial(no-UI),Streaming(UI),Streaming(no-UI),Effect(UI),Effect(no-UI)\n")
|
||
|
|
||
|
for f in tgts: # FD model
|
||
|
for p in tgts: # LPD model
|
||
|
row = "%s/%s,%s/%s" % (f[0], f[1], p[0], p[1]) # FD precision, LPD precision
|
||
|
row += ",%f" % table[Policy.Traditional,UI.With, f,p] # Serial/UI
|
||
|
row += ",%f" % table[Policy.Traditional,UI.Without,f,p] # Serial/no UI
|
||
|
row += ",%f" % table[Policy.Streaming, UI.With, f,p] # Streaming/UI
|
||
|
row += ",%f" % table[Policy.Streaming, UI.Without,f,p] # Streaming/no UI
|
||
|
|
||
|
effect_ui = table[Policy.Streaming,UI.With, f,p] / table[Policy.Traditional,UI.With, f,p]
|
||
|
effect_noui = table[Policy.Streaming,UI.Without,f,p] / table[Policy.Traditional,UI.Without,f,p]
|
||
|
row += ",%f,%f" % (effect_ui,effect_noui)
|
||
|
row += "\n"
|
||
|
csv.write(row)
|
||
|
|
||
|
print("DONE: ", output_file)
|