|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
Partially based on Yossi Rubner code:
|
|
|
|
=========================================================================
|
|
|
|
emd.c
|
|
|
|
|
|
|
|
Last update: 3/14/98
|
|
|
|
|
|
|
|
An implementation of the Earth Movers Distance.
|
|
|
|
Based of the solution for the Transportation problem as described in
|
|
|
|
"Introduction to Mathematical Programming" by F. S. Hillier and
|
|
|
|
G. J. Lieberman, McGraw-Hill, 1990.
|
|
|
|
|
|
|
|
Copyright (C) 1998 Yossi Rubner
|
|
|
|
Computer Science Department, Stanford University
|
|
|
|
E-Mail: rubner@cs.stanford.edu URL: http://vision.stanford.edu/~rubner
|
|
|
|
==========================================================================
|
|
|
|
*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
#define MAX_ITERATIONS 500
|
|
|
|
#define CV_EMD_INF ((float)1e20)
|
|
|
|
#define CV_EMD_EPS ((float)1e-5)
|
|
|
|
|
|
|
|
/* CvNode1D is used for lists, representing 1D sparse array */
|
|
|
|
typedef struct CvNode1D
|
|
|
|
{
|
|
|
|
float val;
|
|
|
|
struct CvNode1D *next;
|
|
|
|
}
|
|
|
|
CvNode1D;
|
|
|
|
|
|
|
|
/* CvNode2D is used for lists, representing 2D sparse matrix */
|
|
|
|
typedef struct CvNode2D
|
|
|
|
{
|
|
|
|
float val;
|
|
|
|
struct CvNode2D *next[2]; /* next row & next column */
|
|
|
|
int i, j;
|
|
|
|
}
|
|
|
|
CvNode2D;
|
|
|
|
|
|
|
|
|
|
|
|
typedef struct CvEMDState
|
|
|
|
{
|
|
|
|
int ssize, dsize;
|
|
|
|
|
|
|
|
float **cost;
|
|
|
|
CvNode2D *_x;
|
|
|
|
CvNode2D *end_x;
|
|
|
|
CvNode2D *enter_x;
|
|
|
|
char **is_x;
|
|
|
|
|
|
|
|
CvNode2D **rows_x;
|
|
|
|
CvNode2D **cols_x;
|
|
|
|
|
|
|
|
CvNode1D *u;
|
|
|
|
CvNode1D *v;
|
|
|
|
|
|
|
|
int* idx1;
|
|
|
|
int* idx2;
|
|
|
|
|
|
|
|
/* find_loop buffers */
|
|
|
|
CvNode2D **loop;
|
|
|
|
char *is_used;
|
|
|
|
|
|
|
|
/* russel buffers */
|
|
|
|
float *s;
|
|
|
|
float *d;
|
|
|
|
float **delta;
|
|
|
|
|
|
|
|
float weight, max_cost;
|
|
|
|
char *buffer;
|
|
|
|
}
|
|
|
|
CvEMDState;
|
|
|
|
|
|
|
|
/* static function declaration */
|
|
|
|
static int icvInitEMD( const float *signature1, int size1,
|
|
|
|
const float *signature2, int size2,
|
|
|
|
int dims, CvDistanceFunction dist_func, void *user_param,
|
|
|
|
const float* cost, int cost_step,
|
|
|
|
CvEMDState * state, float *lower_bound,
|
|
|
|
cv::AutoBuffer<char>& _buffer );
|
|
|
|
|
|
|
|
static int icvFindBasicVariables( float **cost, char **is_x,
|
|
|
|
CvNode1D * u, CvNode1D * v, int ssize, int dsize );
|
|
|
|
|
|
|
|
static float icvIsOptimal( float **cost, char **is_x,
|
|
|
|
CvNode1D * u, CvNode1D * v,
|
|
|
|
int ssize, int dsize, CvNode2D * enter_x );
|
|
|
|
|
|
|
|
static void icvRussel( CvEMDState * state );
|
|
|
|
|
|
|
|
|
|
|
|
static bool icvNewSolution( CvEMDState * state );
|
|
|
|
static int icvFindLoop( CvEMDState * state );
|
|
|
|
|
|
|
|
static void icvAddBasicVariable( CvEMDState * state,
|
|
|
|
int min_i, int min_j,
|
|
|
|
CvNode1D * prev_u_min_i,
|
|
|
|
CvNode1D * prev_v_min_j,
|
|
|
|
CvNode1D * u_head );
|
|
|
|
|
|
|
|
static float icvDistL2( const float *x, const float *y, void *user_param );
|
|
|
|
static float icvDistL1( const float *x, const float *y, void *user_param );
|
|
|
|
static float icvDistC( const float *x, const float *y, void *user_param );
|
|
|
|
|
|
|
|
/* The main function */
|
|
|
|
CV_IMPL float cvCalcEMD2( const CvArr* signature_arr1,
|
|
|
|
const CvArr* signature_arr2,
|
|
|
|
int dist_type,
|
|
|
|
CvDistanceFunction dist_func,
|
|
|
|
const CvArr* cost_matrix,
|
|
|
|
CvArr* flow_matrix,
|
|
|
|
float *lower_bound,
|
|
|
|
void *user_param )
|
|
|
|
{
|
|
|
|
cv::AutoBuffer<char> local_buf;
|
|
|
|
CvEMDState state;
|
|
|
|
float emd = 0;
|
|
|
|
|
|
|
|
memset( &state, 0, sizeof(state));
|
|
|
|
|
|
|
|
double total_cost = 0;
|
|
|
|
int result = 0;
|
|
|
|
float eps, min_delta;
|
|
|
|
CvNode2D *xp = 0;
|
|
|
|
CvMat sign_stub1, *signature1 = (CvMat*)signature_arr1;
|
|
|
|
CvMat sign_stub2, *signature2 = (CvMat*)signature_arr2;
|
|
|
|
CvMat cost_stub, *cost = &cost_stub;
|
|
|
|
CvMat flow_stub, *flow = (CvMat*)flow_matrix;
|
|
|
|
int dims, size1, size2;
|
|
|
|
|
|
|
|
signature1 = cvGetMat( signature1, &sign_stub1 );
|
|
|
|
signature2 = cvGetMat( signature2, &sign_stub2 );
|
|
|
|
|
|
|
|
if( signature1->cols != signature2->cols )
|
|
|
|
CV_Error( CV_StsUnmatchedSizes, "The arrays must have equal number of columns (which is number of dimensions but 1)" );
|
|
|
|
|
|
|
|
dims = signature1->cols - 1;
|
|
|
|
size1 = signature1->rows;
|
|
|
|
size2 = signature2->rows;
|
|
|
|
|
|
|
|
if( !CV_ARE_TYPES_EQ( signature1, signature2 ))
|
|
|
|
CV_Error( CV_StsUnmatchedFormats, "The array must have equal types" );
|
|
|
|
|
|
|
|
if( CV_MAT_TYPE( signature1->type ) != CV_32FC1 )
|
|
|
|
CV_Error( CV_StsUnsupportedFormat, "The signatures must be 32fC1" );
|
|
|
|
|
|
|
|
if( flow )
|
|
|
|
{
|
|
|
|
flow = cvGetMat( flow, &flow_stub );
|
|
|
|
|
|
|
|
if( flow->rows != size1 || flow->cols != size2 )
|
|
|
|
CV_Error( CV_StsUnmatchedSizes,
|
|
|
|
"The flow matrix size does not match to the signatures' sizes" );
|
|
|
|
|
|
|
|
if( CV_MAT_TYPE( flow->type ) != CV_32FC1 )
|
|
|
|
CV_Error( CV_StsUnsupportedFormat, "The flow matrix must be 32fC1" );
|
|
|
|
}
|
|
|
|
|
|
|
|
cost->data.fl = 0;
|
|
|
|
cost->step = 0;
|
|
|
|
|
|
|
|
if( dist_type < 0 )
|
|
|
|
{
|
|
|
|
if( cost_matrix )
|
|
|
|
{
|
|
|
|
if( dist_func )
|
|
|
|
CV_Error( CV_StsBadArg,
|
|
|
|
"Only one of cost matrix or distance function should be non-NULL in case of user-defined distance" );
|
|
|
|
|
|
|
|
if( lower_bound )
|
|
|
|
CV_Error( CV_StsBadArg,
|
|
|
|
"The lower boundary can not be calculated if the cost matrix is used" );
|
|
|
|
|
|
|
|
cost = cvGetMat( cost_matrix, &cost_stub );
|
|
|
|
if( cost->rows != size1 || cost->cols != size2 )
|
|
|
|
CV_Error( CV_StsUnmatchedSizes,
|
|
|
|
"The cost matrix size does not match to the signatures' sizes" );
|
|
|
|
|
|
|
|
if( CV_MAT_TYPE( cost->type ) != CV_32FC1 )
|
|
|
|
CV_Error( CV_StsUnsupportedFormat, "The cost matrix must be 32fC1" );
|
|
|
|
}
|
|
|
|
else if( !dist_func )
|
|
|
|
CV_Error( CV_StsNullPtr, "In case of user-defined distance Distance function is undefined" );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if( dims == 0 )
|
|
|
|
CV_Error( CV_StsBadSize,
|
|
|
|
"Number of dimensions can be 0 only if a user-defined metric is used" );
|
|
|
|
user_param = (void *) (size_t)dims;
|
|
|
|
switch (dist_type)
|
|
|
|
{
|
|
|
|
case CV_DIST_L1:
|
|
|
|
dist_func = icvDistL1;
|
|
|
|
break;
|
|
|
|
case CV_DIST_L2:
|
|
|
|
dist_func = icvDistL2;
|
|
|
|
break;
|
|
|
|
case CV_DIST_C:
|
|
|
|
dist_func = icvDistC;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
CV_Error( CV_StsBadFlag, "Bad or unsupported metric type" );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
result = icvInitEMD( signature1->data.fl, size1,
|
|
|
|
signature2->data.fl, size2,
|
|
|
|
dims, dist_func, user_param,
|
|
|
|
cost->data.fl, cost->step,
|
|
|
|
&state, lower_bound, local_buf );
|
|
|
|
|
|
|
|
if( result > 0 && lower_bound )
|
|
|
|
{
|
|
|
|
emd = *lower_bound;
|
|
|
|
return emd;
|
|
|
|
}
|
|
|
|
|
|
|
|
eps = CV_EMD_EPS * state.max_cost;
|
|
|
|
|
|
|
|
/* if ssize = 1 or dsize = 1 then we are done, else ... */
|
|
|
|
if( state.ssize > 1 && state.dsize > 1 )
|
|
|
|
{
|
|
|
|
int itr;
|
|
|
|
|
|
|
|
for( itr = 1; itr < MAX_ITERATIONS; itr++ )
|
|
|
|
{
|
|
|
|
/* find basic variables */
|
|
|
|
result = icvFindBasicVariables( state.cost, state.is_x,
|
|
|
|
state.u, state.v, state.ssize, state.dsize );
|
|
|
|
if( result < 0 )
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* check for optimality */
|
|
|
|
min_delta = icvIsOptimal( state.cost, state.is_x,
|
|
|
|
state.u, state.v,
|
|
|
|
state.ssize, state.dsize, state.enter_x );
|
|
|
|
|
|
|
|
if( min_delta == CV_EMD_INF )
|
|
|
|
CV_Error( CV_StsNoConv, "" );
|
|
|
|
|
|
|
|
/* if no negative deltamin, we found the optimal solution */
|
|
|
|
if( min_delta >= -eps )
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* improve solution */
|
|
|
|
if(!icvNewSolution( &state ))
|
|
|
|
CV_Error( CV_StsNoConv, "" );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* compute the total flow */
|
|
|
|
for( xp = state._x; xp < state.end_x; xp++ )
|
|
|
|
{
|
|
|
|
float val = xp->val;
|
|
|
|
int i = xp->i;
|
|
|
|
int j = xp->j;
|
|
|
|
|
|
|
|
if( xp == state.enter_x )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
int ci = state.idx1[i];
|
|
|
|
int cj = state.idx2[j];
|
|
|
|
|
|
|
|
if( ci >= 0 && cj >= 0 )
|
|
|
|
{
|
|
|
|
total_cost += (double)val * state.cost[i][j];
|
|
|
|
if( flow )
|
|
|
|
((float*)(flow->data.ptr + flow->step*ci))[cj] = val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
emd = (float) (total_cost / state.weight);
|
|
|
|
return emd;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/************************************************************************************\
|
|
|
|
* initialize structure, allocate buffers and generate initial golution *
|
|
|
|
\************************************************************************************/
|
|
|
|
static int icvInitEMD( const float* signature1, int size1,
|
|
|
|
const float* signature2, int size2,
|
|
|
|
int dims, CvDistanceFunction dist_func, void* user_param,
|
|
|
|
const float* cost, int cost_step,
|
|
|
|
CvEMDState* state, float* lower_bound,
|
|
|
|
cv::AutoBuffer<char>& _buffer )
|
|
|
|
{
|
|
|
|
float s_sum = 0, d_sum = 0, diff;
|
|
|
|
int i, j;
|
|
|
|
int ssize = 0, dsize = 0;
|
|
|
|
int equal_sums = 1;
|
|
|
|
int buffer_size;
|
|
|
|
float max_cost = 0;
|
|
|
|
char *buffer, *buffer_end;
|
|
|
|
|
|
|
|
memset( state, 0, sizeof( *state ));
|
|
|
|
assert( cost_step % sizeof(float) == 0 );
|
|
|
|
cost_step /= sizeof(float);
|
|
|
|
|
|
|
|
/* calculate buffer size */
|
|
|
|
buffer_size = (size1+1) * (size2+1) * (sizeof( float ) + /* cost */
|
|
|
|
sizeof( char ) + /* is_x */
|
|
|
|
sizeof( float )) + /* delta matrix */
|
|
|
|
(size1 + size2 + 2) * (sizeof( CvNode2D ) + /* _x */
|
|
|
|
sizeof( CvNode2D * ) + /* cols_x & rows_x */
|
|
|
|
sizeof( CvNode1D ) + /* u & v */
|
|
|
|
sizeof( float ) + /* s & d */
|
|
|
|
sizeof( int ) + sizeof(CvNode2D*)) + /* idx1 & idx2 */
|
|
|
|
(size1+1) * (sizeof( float * ) + sizeof( char * ) + /* rows pointers for */
|
|
|
|
sizeof( float * )) + 256; /* cost, is_x and delta */
|
|
|
|
|
|
|
|
if( buffer_size < (int) (dims * 2 * sizeof( float )))
|
|
|
|
{
|
|
|
|
buffer_size = dims * 2 * sizeof( float );
|
|
|
|
}
|
|
|
|
|
|
|
|
/* allocate buffers */
|
|
|
|
_buffer.allocate(buffer_size);
|
|
|
|
|
|
|
|
state->buffer = buffer = _buffer;
|
|
|
|
buffer_end = buffer + buffer_size;
|
|
|
|
|
|
|
|
state->idx1 = (int*) buffer;
|
|
|
|
buffer += (size1 + 1) * sizeof( int );
|
|
|
|
|
|
|
|
state->idx2 = (int*) buffer;
|
|
|
|
buffer += (size2 + 1) * sizeof( int );
|
|
|
|
|
|
|
|
state->s = (float *) buffer;
|
|
|
|
buffer += (size1 + 1) * sizeof( float );
|
|
|
|
|
|
|
|
state->d = (float *) buffer;
|
|
|
|
buffer += (size2 + 1) * sizeof( float );
|
|
|
|
|
|
|
|
/* sum up the supply and demand */
|
|
|
|
for( i = 0; i < size1; i++ )
|
|
|
|
{
|
|
|
|
float weight = signature1[i * (dims + 1)];
|
|
|
|
|
|
|
|
if( weight > 0 )
|
|
|
|
{
|
|
|
|
s_sum += weight;
|
|
|
|
state->s[ssize] = weight;
|
|
|
|
state->idx1[ssize++] = i;
|
|
|
|
|
|
|
|
}
|
|
|
|
else if( weight < 0 )
|
|
|
|
CV_Error(CV_StsOutOfRange, "");
|
|
|
|
}
|
|
|
|
|
|
|
|
for( i = 0; i < size2; i++ )
|
|
|
|
{
|
|
|
|
float weight = signature2[i * (dims + 1)];
|
|
|
|
|
|
|
|
if( weight > 0 )
|
|
|
|
{
|
|
|
|
d_sum += weight;
|
|
|
|
state->d[dsize] = weight;
|
|
|
|
state->idx2[dsize++] = i;
|
|
|
|
}
|
|
|
|
else if( weight < 0 )
|
|
|
|
CV_Error(CV_StsOutOfRange, "");
|
|
|
|
}
|
|
|
|
|
|
|
|
if( ssize == 0 || dsize == 0 )
|
|
|
|
CV_Error(CV_StsOutOfRange, "");
|
|
|
|
|
|
|
|
/* if supply different than the demand, add a zero-cost dummy cluster */
|
|
|
|
diff = s_sum - d_sum;
|
|
|
|
if( fabs( diff ) >= CV_EMD_EPS * s_sum )
|
|
|
|
{
|
|
|
|
equal_sums = 0;
|
|
|
|
if( diff < 0 )
|
|
|
|
{
|
|
|
|
state->s[ssize] = -diff;
|
|
|
|
state->idx1[ssize++] = -1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
state->d[dsize] = diff;
|
|
|
|
state->idx2[dsize++] = -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
state->ssize = ssize;
|
|
|
|
state->dsize = dsize;
|
|
|
|
state->weight = s_sum > d_sum ? s_sum : d_sum;
|
|
|
|
|
|
|
|
if( lower_bound && equal_sums ) /* check lower bound */
|
|
|
|
{
|
|
|
|
int sz1 = size1 * (dims + 1), sz2 = size2 * (dims + 1);
|
|
|
|
float lb = 0;
|
|
|
|
|
|
|
|
float* xs = (float *) buffer;
|
|
|
|
float* xd = xs + dims;
|
|
|
|
|
|
|
|
memset( xs, 0, dims*sizeof(xs[0]));
|
|
|
|
memset( xd, 0, dims*sizeof(xd[0]));
|
|
|
|
|
|
|
|
for( j = 0; j < sz1; j += dims + 1 )
|
|
|
|
{
|
|
|
|
float weight = signature1[j];
|
|
|
|
for( i = 0; i < dims; i++ )
|
|
|
|
xs[i] += signature1[j + i + 1] * weight;
|
|
|
|
}
|
|
|
|
|
|
|
|
for( j = 0; j < sz2; j += dims + 1 )
|
|
|
|
{
|
|
|
|
float weight = signature2[j];
|
|
|
|
for( i = 0; i < dims; i++ )
|
|
|
|
xd[i] += signature2[j + i + 1] * weight;
|
|
|
|
}
|
|
|
|
|
|
|
|
lb = dist_func( xs, xd, user_param ) / state->weight;
|
|
|
|
i = *lower_bound <= lb;
|
|
|
|
*lower_bound = lb;
|
|
|
|
if( i )
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* assign pointers */
|
|
|
|
state->is_used = (char *) buffer;
|
|
|
|
/* init delta matrix */
|
|
|
|
state->delta = (float **) buffer;
|
|
|
|
buffer += ssize * sizeof( float * );
|
|
|
|
|
|
|
|
for( i = 0; i < ssize; i++ )
|
|
|
|
{
|
|
|
|
state->delta[i] = (float *) buffer;
|
|
|
|
buffer += dsize * sizeof( float );
|
|
|
|
}
|
|
|
|
|
|
|
|
state->loop = (CvNode2D **) buffer;
|
|
|
|
buffer += (ssize + dsize + 1) * sizeof(CvNode2D*);
|
|
|
|
|
|
|
|
state->_x = state->end_x = (CvNode2D *) buffer;
|
|
|
|
buffer += (ssize + dsize) * sizeof( CvNode2D );
|
|
|
|
|
|
|
|
/* init cost matrix */
|
|
|
|
state->cost = (float **) buffer;
|
|
|
|
buffer += ssize * sizeof( float * );
|
|
|
|
|
|
|
|
/* compute the distance matrix */
|
|
|
|
for( i = 0; i < ssize; i++ )
|
|
|
|
{
|
|
|
|
int ci = state->idx1[i];
|
|
|
|
|
|
|
|
state->cost[i] = (float *) buffer;
|
|
|
|
buffer += dsize * sizeof( float );
|
|
|
|
|
|
|
|
if( ci >= 0 )
|
|
|
|
{
|
|
|
|
for( j = 0; j < dsize; j++ )
|
|
|
|
{
|
|
|
|
int cj = state->idx2[j];
|
|
|
|
if( cj < 0 )
|
|
|
|
state->cost[i][j] = 0;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
float val;
|
|
|
|
if( dist_func )
|
|
|
|
{
|
|
|
|
val = dist_func( signature1 + ci * (dims + 1) + 1,
|
|
|
|
signature2 + cj * (dims + 1) + 1,
|
|
|
|
user_param );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
assert( cost );
|
|
|
|
val = cost[cost_step*ci + cj];
|
|
|
|
}
|
|
|
|
state->cost[i][j] = val;
|
|
|
|
if( max_cost < val )
|
|
|
|
max_cost = val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
for( j = 0; j < dsize; j++ )
|
|
|
|
state->cost[i][j] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
state->max_cost = max_cost;
|
|
|
|
|
|
|
|
memset( buffer, 0, buffer_end - buffer );
|
|
|
|
|
|
|
|
state->rows_x = (CvNode2D **) buffer;
|
|
|
|
buffer += ssize * sizeof( CvNode2D * );
|
|
|
|
|
|
|
|
state->cols_x = (CvNode2D **) buffer;
|
|
|
|
buffer += dsize * sizeof( CvNode2D * );
|
|
|
|
|
|
|
|
state->u = (CvNode1D *) buffer;
|
|
|
|
buffer += ssize * sizeof( CvNode1D );
|
|
|
|
|
|
|
|
state->v = (CvNode1D *) buffer;
|
|
|
|
buffer += dsize * sizeof( CvNode1D );
|
|
|
|
|
|
|
|
/* init is_x matrix */
|
|
|
|
state->is_x = (char **) buffer;
|
|
|
|
buffer += ssize * sizeof( char * );
|
|
|
|
|
|
|
|
for( i = 0; i < ssize; i++ )
|
|
|
|
{
|
|
|
|
state->is_x[i] = buffer;
|
|
|
|
buffer += dsize;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert( buffer <= buffer_end );
|
|
|
|
|
|
|
|
icvRussel( state );
|
|
|
|
|
|
|
|
state->enter_x = (state->end_x)++;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
* icvFindBasicVariables *
|
|
|
|
\****************************************************************************************/
|
|
|
|
static int icvFindBasicVariables( float **cost, char **is_x,
|
|
|
|
CvNode1D * u, CvNode1D * v, int ssize, int dsize )
|
|
|
|
{
|
|
|
|
int i, j, found;
|
|
|
|
int u_cfound, v_cfound;
|
|
|
|
CvNode1D u0_head, u1_head, *cur_u, *prev_u;
|
|
|
|
CvNode1D v0_head, v1_head, *cur_v, *prev_v;
|
|
|
|
|
|
|
|
/* initialize the rows list (u) and the columns list (v) */
|
|
|
|
u0_head.next = u;
|
|
|
|
for( i = 0; i < ssize; i++ )
|
|
|
|
{
|
|
|
|
u[i].next = u + i + 1;
|
|
|
|
}
|
|
|
|
u[ssize - 1].next = 0;
|
|
|
|
u1_head.next = 0;
|
|
|
|
|
|
|
|
v0_head.next = ssize > 1 ? v + 1 : 0;
|
|
|
|
for( i = 1; i < dsize; i++ )
|
|
|
|
{
|
|
|
|
v[i].next = v + i + 1;
|
|
|
|
}
|
|
|
|
v[dsize - 1].next = 0;
|
|
|
|
v1_head.next = 0;
|
|
|
|
|
|
|
|
/* there are ssize+dsize variables but only ssize+dsize-1 independent equations,
|
|
|
|
so set v[0]=0 */
|
|
|
|
v[0].val = 0;
|
|
|
|
v1_head.next = v;
|
|
|
|
v1_head.next->next = 0;
|
|
|
|
|
|
|
|
/* loop until all variables are found */
|
|
|
|
u_cfound = v_cfound = 0;
|
|
|
|
while( u_cfound < ssize || v_cfound < dsize )
|
|
|
|
{
|
|
|
|
found = 0;
|
|
|
|
if( v_cfound < dsize )
|
|
|
|
{
|
|
|
|
/* loop over all marked columns */
|
|
|
|
prev_v = &v1_head;
|
|
|
|
|
|
|
|
for( found |= (cur_v = v1_head.next) != 0; cur_v != 0; cur_v = cur_v->next )
|
|
|
|
{
|
|
|
|
float cur_v_val = cur_v->val;
|
|
|
|
|
|
|
|
j = (int)(cur_v - v);
|
|
|
|
/* find the variables in column j */
|
|
|
|
prev_u = &u0_head;
|
|
|
|
for( cur_u = u0_head.next; cur_u != 0; )
|
|
|
|
{
|
|
|
|
i = (int)(cur_u - u);
|
|
|
|
if( is_x[i][j] )
|
|
|
|
{
|
|
|
|
/* compute u[i] */
|
|
|
|
cur_u->val = cost[i][j] - cur_v_val;
|
|
|
|
/* ...and add it to the marked list */
|
|
|
|
prev_u->next = cur_u->next;
|
|
|
|
cur_u->next = u1_head.next;
|
|
|
|
u1_head.next = cur_u;
|
|
|
|
cur_u = prev_u->next;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
prev_u = cur_u;
|
|
|
|
cur_u = cur_u->next;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
prev_v->next = cur_v->next;
|
|
|
|
v_cfound++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( u_cfound < ssize )
|
|
|
|
{
|
|
|
|
/* loop over all marked rows */
|
|
|
|
prev_u = &u1_head;
|
|
|
|
for( found |= (cur_u = u1_head.next) != 0; cur_u != 0; cur_u = cur_u->next )
|
|
|
|
{
|
|
|
|
float cur_u_val = cur_u->val;
|
|
|
|
float *_cost;
|
|
|
|
char *_is_x;
|
|
|
|
|
|
|
|
i = (int)(cur_u - u);
|
|
|
|
_cost = cost[i];
|
|
|
|
_is_x = is_x[i];
|
|
|
|
/* find the variables in rows i */
|
|
|
|
prev_v = &v0_head;
|
|
|
|
for( cur_v = v0_head.next; cur_v != 0; )
|
|
|
|
{
|
|
|
|
j = (int)(cur_v - v);
|
|
|
|
if( _is_x[j] )
|
|
|
|
{
|
|
|
|
/* compute v[j] */
|
|
|
|
cur_v->val = _cost[j] - cur_u_val;
|
|
|
|
/* ...and add it to the marked list */
|
|
|
|
prev_v->next = cur_v->next;
|
|
|
|
cur_v->next = v1_head.next;
|
|
|
|
v1_head.next = cur_v;
|
|
|
|
cur_v = prev_v->next;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
prev_v = cur_v;
|
|
|
|
cur_v = cur_v->next;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
prev_u->next = cur_u->next;
|
|
|
|
u_cfound++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( !found )
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
* icvIsOptimal *
|
|
|
|
\****************************************************************************************/
|
|
|
|
static float
|
|
|
|
icvIsOptimal( float **cost, char **is_x,
|
|
|
|
CvNode1D * u, CvNode1D * v, int ssize, int dsize, CvNode2D * enter_x )
|
|
|
|
{
|
|
|
|
float delta, min_delta = CV_EMD_INF;
|
|
|
|
int i, j, min_i = 0, min_j = 0;
|
|
|
|
|
|
|
|
/* find the minimal cij-ui-vj over all i,j */
|
|
|
|
for( i = 0; i < ssize; i++ )
|
|
|
|
{
|
|
|
|
float u_val = u[i].val;
|
|
|
|
float *_cost = cost[i];
|
|
|
|
char *_is_x = is_x[i];
|
|
|
|
|
|
|
|
for( j = 0; j < dsize; j++ )
|
|
|
|
{
|
|
|
|
if( !_is_x[j] )
|
|
|
|
{
|
|
|
|
delta = _cost[j] - u_val - v[j].val;
|
|
|
|
if( min_delta > delta )
|
|
|
|
{
|
|
|
|
min_delta = delta;
|
|
|
|
min_i = i;
|
|
|
|
min_j = j;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
enter_x->i = min_i;
|
|
|
|
enter_x->j = min_j;
|
|
|
|
|
|
|
|
return min_delta;
|
|
|
|
}
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
* icvNewSolution *
|
|
|
|
\****************************************************************************************/
|
|
|
|
static bool
|
|
|
|
icvNewSolution( CvEMDState * state )
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
float min_val = CV_EMD_INF;
|
|
|
|
int steps;
|
|
|
|
CvNode2D head, *cur_x, *next_x, *leave_x = 0;
|
|
|
|
CvNode2D *enter_x = state->enter_x;
|
|
|
|
CvNode2D **loop = state->loop;
|
|
|
|
|
|
|
|
/* enter the new basic variable */
|
|
|
|
i = enter_x->i;
|
|
|
|
j = enter_x->j;
|
|
|
|
state->is_x[i][j] = 1;
|
|
|
|
enter_x->next[0] = state->rows_x[i];
|
|
|
|
enter_x->next[1] = state->cols_x[j];
|
|
|
|
enter_x->val = 0;
|
|
|
|
state->rows_x[i] = enter_x;
|
|
|
|
state->cols_x[j] = enter_x;
|
|
|
|
|
|
|
|
/* find a chain reaction */
|
|
|
|
steps = icvFindLoop( state );
|
|
|
|
|
|
|
|
if( steps == 0 )
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/* find the largest value in the loop */
|
|
|
|
for( i = 1; i < steps; i += 2 )
|
|
|
|
{
|
|
|
|
float temp = loop[i]->val;
|
|
|
|
|
|
|
|
if( min_val > temp )
|
|
|
|
{
|
|
|
|
leave_x = loop[i];
|
|
|
|
min_val = temp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* update the loop */
|
|
|
|
for( i = 0; i < steps; i += 2 )
|
|
|
|
{
|
|
|
|
float temp0 = loop[i]->val + min_val;
|
|
|
|
float temp1 = loop[i + 1]->val - min_val;
|
|
|
|
|
|
|
|
loop[i]->val = temp0;
|
|
|
|
loop[i + 1]->val = temp1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* remove the leaving basic variable */
|
|
|
|
i = leave_x->i;
|
|
|
|
j = leave_x->j;
|
|
|
|
state->is_x[i][j] = 0;
|
|
|
|
|
|
|
|
head.next[0] = state->rows_x[i];
|
|
|
|
cur_x = &head;
|
|
|
|
while( (next_x = cur_x->next[0]) != leave_x )
|
|
|
|
{
|
|
|
|
cur_x = next_x;
|
|
|
|
assert( cur_x );
|
|
|
|
}
|
|
|
|
cur_x->next[0] = next_x->next[0];
|
|
|
|
state->rows_x[i] = head.next[0];
|
|
|
|
|
|
|
|
head.next[1] = state->cols_x[j];
|
|
|
|
cur_x = &head;
|
|
|
|
while( (next_x = cur_x->next[1]) != leave_x )
|
|
|
|
{
|
|
|
|
cur_x = next_x;
|
|
|
|
assert( cur_x );
|
|
|
|
}
|
|
|
|
cur_x->next[1] = next_x->next[1];
|
|
|
|
state->cols_x[j] = head.next[1];
|
|
|
|
|
|
|
|
/* set enter_x to be the new empty slot */
|
|
|
|
state->enter_x = leave_x;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
* icvFindLoop *
|
|
|
|
\****************************************************************************************/
|
|
|
|
static int
|
|
|
|
icvFindLoop( CvEMDState * state )
|
|
|
|
{
|
|
|
|
int i, steps = 1;
|
|
|
|
CvNode2D *new_x;
|
|
|
|
CvNode2D **loop = state->loop;
|
|
|
|
CvNode2D *enter_x = state->enter_x, *_x = state->_x;
|
|
|
|
char *is_used = state->is_used;
|
|
|
|
|
|
|
|
memset( is_used, 0, state->ssize + state->dsize );
|
|
|
|
|
|
|
|
new_x = loop[0] = enter_x;
|
|
|
|
is_used[enter_x - _x] = 1;
|
|
|
|
steps = 1;
|
|
|
|
|
|
|
|
do
|
|
|
|
{
|
|
|
|
if( (steps & 1) == 1 )
|
|
|
|
{
|
|
|
|
/* find an unused x in the row */
|
|
|
|
new_x = state->rows_x[new_x->i];
|
|
|
|
while( new_x != 0 && is_used[new_x - _x] )
|
|
|
|
new_x = new_x->next[0];
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* find an unused x in the column, or the entering x */
|
|
|
|
new_x = state->cols_x[new_x->j];
|
|
|
|
while( new_x != 0 && is_used[new_x - _x] && new_x != enter_x )
|
|
|
|
new_x = new_x->next[1];
|
|
|
|
if( new_x == enter_x )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( new_x != 0 ) /* found the next x */
|
|
|
|
{
|
|
|
|
/* add x to the loop */
|
|
|
|
loop[steps++] = new_x;
|
|
|
|
is_used[new_x - _x] = 1;
|
|
|
|
}
|
|
|
|
else /* didn't find the next x */
|
|
|
|
{
|
|
|
|
/* backtrack */
|
|
|
|
do
|
|
|
|
{
|
|
|
|
i = steps & 1;
|
|
|
|
new_x = loop[steps - 1];
|
|
|
|
do
|
|
|
|
{
|
|
|
|
new_x = new_x->next[i];
|
|
|
|
}
|
|
|
|
while( new_x != 0 && is_used[new_x - _x] );
|
|
|
|
|
|
|
|
if( new_x == 0 )
|
|
|
|
{
|
|
|
|
is_used[loop[--steps] - _x] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
while( new_x == 0 && steps > 0 );
|
|
|
|
|
|
|
|
is_used[loop[steps - 1] - _x] = 0;
|
|
|
|
loop[steps - 1] = new_x;
|
|
|
|
is_used[new_x - _x] = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
while( steps > 0 );
|
|
|
|
|
|
|
|
return steps;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
* icvRussel *
|
|
|
|
\****************************************************************************************/
|
|
|
|
static void
|
|
|
|
icvRussel( CvEMDState * state )
|
|
|
|
{
|
|
|
|
int i, j, min_i = -1, min_j = -1;
|
|
|
|
float min_delta, diff;
|
|
|
|
CvNode1D u_head, *cur_u, *prev_u;
|
|
|
|
CvNode1D v_head, *cur_v, *prev_v;
|
|
|
|
CvNode1D *prev_u_min_i = 0, *prev_v_min_j = 0, *remember;
|
|
|
|
CvNode1D *u = state->u, *v = state->v;
|
|
|
|
int ssize = state->ssize, dsize = state->dsize;
|
|
|
|
float eps = CV_EMD_EPS * state->max_cost;
|
|
|
|
float **cost = state->cost;
|
|
|
|
float **delta = state->delta;
|
|
|
|
|
|
|
|
/* initialize the rows list (ur), and the columns list (vr) */
|
|
|
|
u_head.next = u;
|
|
|
|
for( i = 0; i < ssize; i++ )
|
|
|
|
{
|
|
|
|
u[i].next = u + i + 1;
|
|
|
|
}
|
|
|
|
u[ssize - 1].next = 0;
|
|
|
|
|
|
|
|
v_head.next = v;
|
|
|
|
for( i = 0; i < dsize; i++ )
|
|
|
|
{
|
|
|
|
v[i].val = -CV_EMD_INF;
|
|
|
|
v[i].next = v + i + 1;
|
|
|
|
}
|
|
|
|
v[dsize - 1].next = 0;
|
|
|
|
|
|
|
|
/* find the maximum row and column values (ur[i] and vr[j]) */
|
|
|
|
for( i = 0; i < ssize; i++ )
|
|
|
|
{
|
|
|
|
float u_val = -CV_EMD_INF;
|
|
|
|
float *cost_row = cost[i];
|
|
|
|
|
|
|
|
for( j = 0; j < dsize; j++ )
|
|
|
|
{
|
|
|
|
float temp = cost_row[j];
|
|
|
|
|
|
|
|
if( u_val < temp )
|
|
|
|
u_val = temp;
|
|
|
|
if( v[j].val < temp )
|
|
|
|
v[j].val = temp;
|
|
|
|
}
|
|
|
|
u[i].val = u_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* compute the delta matrix */
|
|
|
|
for( i = 0; i < ssize; i++ )
|
|
|
|
{
|
|
|
|
float u_val = u[i].val;
|
|
|
|
float *delta_row = delta[i];
|
|
|
|
float *cost_row = cost[i];
|
|
|
|
|
|
|
|
for( j = 0; j < dsize; j++ )
|
|
|
|
{
|
|
|
|
delta_row[j] = cost_row[j] - u_val - v[j].val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* find the basic variables */
|
|
|
|
do
|
|
|
|
{
|
|
|
|
/* find the smallest delta[i][j] */
|
|
|
|
min_i = -1;
|
|
|
|
min_delta = CV_EMD_INF;
|
|
|
|
prev_u = &u_head;
|
|
|
|
for( cur_u = u_head.next; cur_u != 0; cur_u = cur_u->next )
|
|
|
|
{
|
|
|
|
i = (int)(cur_u - u);
|
|
|
|
float *delta_row = delta[i];
|
|
|
|
|
|
|
|
prev_v = &v_head;
|
|
|
|
for( cur_v = v_head.next; cur_v != 0; cur_v = cur_v->next )
|
|
|
|
{
|
|
|
|
j = (int)(cur_v - v);
|
|
|
|
if( min_delta > delta_row[j] )
|
|
|
|
{
|
|
|
|
min_delta = delta_row[j];
|
|
|
|
min_i = i;
|
|
|
|
min_j = j;
|
|
|
|
prev_u_min_i = prev_u;
|
|
|
|
prev_v_min_j = prev_v;
|
|
|
|
}
|
|
|
|
prev_v = cur_v;
|
|
|
|
}
|
|
|
|
prev_u = cur_u;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( min_i < 0 )
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* add x[min_i][min_j] to the basis, and adjust supplies and cost */
|
|
|
|
remember = prev_u_min_i->next;
|
|
|
|
icvAddBasicVariable( state, min_i, min_j, prev_u_min_i, prev_v_min_j, &u_head );
|
|
|
|
|
|
|
|
/* update the necessary delta[][] */
|
|
|
|
if( remember == prev_u_min_i->next ) /* line min_i was deleted */
|
|
|
|
{
|
|
|
|
for( cur_v = v_head.next; cur_v != 0; cur_v = cur_v->next )
|
|
|
|
{
|
|
|
|
j = (int)(cur_v - v);
|
|
|
|
if( cur_v->val == cost[min_i][j] ) /* column j needs updating */
|
|
|
|
{
|
|
|
|
float max_val = -CV_EMD_INF;
|
|
|
|
|
|
|
|
/* find the new maximum value in the column */
|
|
|
|
for( cur_u = u_head.next; cur_u != 0; cur_u = cur_u->next )
|
|
|
|
{
|
|
|
|
float temp = cost[cur_u - u][j];
|
|
|
|
|
|
|
|
if( max_val < temp )
|
|
|
|
max_val = temp;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* if needed, adjust the relevant delta[*][j] */
|
|
|
|
diff = max_val - cur_v->val;
|
|
|
|
cur_v->val = max_val;
|
|
|
|
if( fabs( diff ) < eps )
|
|
|
|
{
|
|
|
|
for( cur_u = u_head.next; cur_u != 0; cur_u = cur_u->next )
|
|
|
|
delta[cur_u - u][j] += diff;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else /* column min_j was deleted */
|
|
|
|
{
|
|
|
|
for( cur_u = u_head.next; cur_u != 0; cur_u = cur_u->next )
|
|
|
|
{
|
|
|
|
i = (int)(cur_u - u);
|
|
|
|
if( cur_u->val == cost[i][min_j] ) /* row i needs updating */
|
|
|
|
{
|
|
|
|
float max_val = -CV_EMD_INF;
|
|
|
|
|
|
|
|
/* find the new maximum value in the row */
|
|
|
|
for( cur_v = v_head.next; cur_v != 0; cur_v = cur_v->next )
|
|
|
|
{
|
|
|
|
float temp = cost[i][cur_v - v];
|
|
|
|
|
|
|
|
if( max_val < temp )
|
|
|
|
max_val = temp;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* if needed, adjust the relevant delta[i][*] */
|
|
|
|
diff = max_val - cur_u->val;
|
|
|
|
cur_u->val = max_val;
|
|
|
|
|
|
|
|
if( fabs( diff ) < eps )
|
|
|
|
{
|
|
|
|
for( cur_v = v_head.next; cur_v != 0; cur_v = cur_v->next )
|
|
|
|
delta[i][cur_v - v] += diff;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
while( u_head.next != 0 || v_head.next != 0 );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
* icvAddBasicVariable *
|
|
|
|
\****************************************************************************************/
|
|
|
|
static void
|
|
|
|
icvAddBasicVariable( CvEMDState * state,
|
|
|
|
int min_i, int min_j,
|
|
|
|
CvNode1D * prev_u_min_i, CvNode1D * prev_v_min_j, CvNode1D * u_head )
|
|
|
|
{
|
|
|
|
float temp;
|
|
|
|
CvNode2D *end_x = state->end_x;
|
|
|
|
|
|
|
|
if( state->s[min_i] < state->d[min_j] + state->weight * CV_EMD_EPS )
|
|
|
|
{ /* supply exhausted */
|
|
|
|
temp = state->s[min_i];
|
|
|
|
state->s[min_i] = 0;
|
|
|
|
state->d[min_j] -= temp;
|
|
|
|
}
|
|
|
|
else /* demand exhausted */
|
|
|
|
{
|
|
|
|
temp = state->d[min_j];
|
|
|
|
state->d[min_j] = 0;
|
|
|
|
state->s[min_i] -= temp;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* x(min_i,min_j) is a basic variable */
|
|
|
|
state->is_x[min_i][min_j] = 1;
|
|
|
|
|
|
|
|
end_x->val = temp;
|
|
|
|
end_x->i = min_i;
|
|
|
|
end_x->j = min_j;
|
|
|
|
end_x->next[0] = state->rows_x[min_i];
|
|
|
|
end_x->next[1] = state->cols_x[min_j];
|
|
|
|
state->rows_x[min_i] = end_x;
|
|
|
|
state->cols_x[min_j] = end_x;
|
|
|
|
state->end_x = end_x + 1;
|
|
|
|
|
|
|
|
/* delete supply row only if the empty, and if not last row */
|
|
|
|
if( state->s[min_i] == 0 && u_head->next->next != 0 )
|
|
|
|
prev_u_min_i->next = prev_u_min_i->next->next; /* remove row from list */
|
|
|
|
else
|
|
|
|
prev_v_min_j->next = prev_v_min_j->next->next; /* remove column from list */
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
* standard metrics *
|
|
|
|
\****************************************************************************************/
|
|
|
|
static float
|
|
|
|
icvDistL1( const float *x, const float *y, void *user_param )
|
|
|
|
{
|
|
|
|
int i, dims = (int)(size_t)user_param;
|
|
|
|
double s = 0;
|
|
|
|
|
|
|
|
for( i = 0; i < dims; i++ )
|
|
|
|
{
|
|
|
|
double t = x[i] - y[i];
|
|
|
|
|
|
|
|
s += fabs( t );
|
|
|
|
}
|
|
|
|
return (float)s;
|
|
|
|
}
|
|
|
|
|
|
|
|
static float
|
|
|
|
icvDistL2( const float *x, const float *y, void *user_param )
|
|
|
|
{
|
|
|
|
int i, dims = (int)(size_t)user_param;
|
|
|
|
double s = 0;
|
|
|
|
|
|
|
|
for( i = 0; i < dims; i++ )
|
|
|
|
{
|
|
|
|
double t = x[i] - y[i];
|
|
|
|
|
|
|
|
s += t * t;
|
|
|
|
}
|
|
|
|
return cvSqrt( (float)s );
|
|
|
|
}
|
|
|
|
|
|
|
|
static float
|
|
|
|
icvDistC( const float *x, const float *y, void *user_param )
|
|
|
|
{
|
|
|
|
int i, dims = (int)(size_t)user_param;
|
|
|
|
double s = 0;
|
|
|
|
|
|
|
|
for( i = 0; i < dims; i++ )
|
|
|
|
{
|
|
|
|
double t = fabs( x[i] - y[i] );
|
|
|
|
|
|
|
|
if( s < t )
|
|
|
|
s = t;
|
|
|
|
}
|
|
|
|
return (float)s;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* End of file. */
|
|
|
|
|