Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

497 lines
12 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
//#include "opencv2/imgproc/segmentation.hpp"
namespace opencv_test { namespace {
Mat getTestImageGray()
{
static Mat m;
if (m.empty())
{
m = imread(findDataFile("shared/lena.png"), IMREAD_GRAYSCALE);
}
return m.clone();
}
Mat getTestImageColor()
{
static Mat m;
if (m.empty())
{
m = imread(findDataFile("shared/lena.png"), IMREAD_COLOR);
}
return m.clone();
}
Mat getTestImage1()
{
static Mat m;
if (m.empty())
{
m.create(Size(200, 100), CV_8UC1);
m.setTo(Scalar::all(128));
Rect roi(50, 30, 100, 40);
m(roi).setTo(Scalar::all(0));
#if 0
imshow("image", m);
waitKey();
#endif
}
return m.clone();
}
Mat getTestImage2()
{
static Mat m;
if (m.empty())
{
m.create(Size(200, 100), CV_8UC1);
m.setTo(Scalar::all(128));
Rect roi(40, 30, 100, 40);
m(roi).setTo(Scalar::all(255));
#if 0
imshow("image", m);
waitKey();
#endif
}
return m.clone();
}
Mat getTestImage3()
{
static Mat m;
if (m.empty())
{
m.create(Size(200, 100), CV_8UC1);
m.setTo(Scalar::all(128));
Scalar color(0,0,0,0);
line(m, Point(30, 50), Point(50, 50), color, 1);
line(m, Point(50, 50), Point(80, 30), color, 1);
line(m, Point(150, 50), Point(80, 30), color, 1);
line(m, Point(150, 50), Point(180, 50), color, 1);
line(m, Point(80, 10), Point(80, 90), Scalar::all(200), 1);
line(m, Point(100, 10), Point(100, 90), Scalar::all(200), 1);
line(m, Point(120, 10), Point(120, 90), Scalar::all(200), 1);
#if 0
imshow("image", m);
waitKey();
#endif
}
return m.clone();
}
Mat getTestImage4()
{
static Mat m;
if (m.empty())
{
m.create(Size(200, 100), CV_8UC1);
for (int y = 0; y < m.rows; y++)
{
for (int x = 0; x < m.cols; x++)
{
float dx = (float)(x - 100);
float dy = (float)(y - 100);
float d = sqrtf(dx * dx + dy * dy);
m.at<uchar>(y, x) = saturate_cast<uchar>(100 + 100 * sin(d / 10 * CV_PI));
}
}
#if 0
imshow("image", m);
waitKey();
#endif
}
return m.clone();
}
Mat getTestImage5()
{
static Mat m;
if (m.empty())
{
m.create(Size(200, 100), CV_8UC1);
for (int y = 0; y < m.rows; y++)
{
for (int x = 0; x < m.cols; x++)
{
float dx = (float)(x - 100);
float dy = (float)(y - 100);
float d = sqrtf(dx * dx + dy * dy);
m.at<uchar>(y, x) = saturate_cast<uchar>(x / 2 + 100 * sin(d / 10 * CV_PI));
}
}
#if 0
imshow("image", m);
waitKey();
#endif
}
return m.clone();
}
void show(const Mat& img, const std::vector<Point> pts)
{
if (cvtest::debugLevel >= 10)
{
Mat dst = img.clone();
std::vector< std::vector<Point> > contours;
contours.push_back(pts);
polylines(dst, contours, false, Scalar::all(255));
imshow("dst", dst);
waitKey();
}
}
Size estimateContourSize(const std::vector<Point>& pts)
{
Size s(0,0);
for (size_t i = 0; i < pts.size(); i++)
{
if (s.width < pts[i].x)
s.width = pts[i].x;
if (s.height < pts[i].y)
s.height = pts[i].y;
}
return s;
}
int contoursAreaPixelsMismatch(const std::vector<Point>& pts, const std::vector<Point>& gt)
{
Size ptsSize = estimateContourSize(pts);
Size gtSize = estimateContourSize(gt);
Size imgSize(std::max(ptsSize.width, gtSize.width)+1, std::max(ptsSize.height, gtSize.height)+1);
Mat ptsArea = Mat::zeros(imgSize, CV_8UC1);
Mat gtArea = Mat::zeros(imgSize, CV_8UC1);
std::vector<std::vector<Point>> pts_wrapped = {pts};
std::vector<std::vector<Point>> gt_wrapped = {gt};
drawContours(ptsArea, pts_wrapped, -1, Scalar(255), FILLED);
drawContours(gtArea, gt_wrapped, -1, Scalar(255), FILLED);
Mat uni = ptsArea | gtArea;
Mat intersection = ptsArea & gtArea;
bitwise_not(intersection, intersection);
Mat delta = uni & intersection;
return countNonZero(delta);
}
void checkContour(std::vector<Point>& pts,
const bool backward = false,
int allowed_mismatch = 0)
{
const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info();
CV_Assert(test_info);
const std::string name = std::string(cvtest::TS::ptr()->get_data_path() + "imgproc/" + test_info->test_case_name() + "-" + test_info->name() + (backward ? "-backward" : "") + ".xml");
std::vector<Point> reference_pts;
#ifdef GENERATE_TEST_DATA
{
cv::FileStorage fs(name, cv::FileStorage::WRITE);
fs << "pts" << pts;
}
reference_pts = pts;
#else
FileStorage fs(name, FileStorage::READ);
read(fs["pts"], reference_pts, std::vector<Point>());
#endif
if (!allowed_mismatch)
EXPECT_EQ(pts, reference_pts);
else
EXPECT_LE(contoursAreaPixelsMismatch(pts, reference_pts), allowed_mismatch);
}
TEST(Imgproc_IntelligentScissorsMB, rect)
{
segmentation::IntelligentScissorsMB tool;
Mat image = getTestImage1();
tool.applyImage(image);
Point source_point(50, 30);
tool.buildMap(source_point);
Point target_point(100, 30);
std::vector<Point> pts;
tool.getContour(target_point, pts);
checkContour(pts);
show(image, pts);
Mat image2 = getTestImage2();
tool.applyImage(image2);
tool.buildMap(source_point);
std::vector<Point> pts2;
tool.getContour(target_point, pts2, true/*backward*/);
checkContour(pts2, true/*backward*/);
show(image2, pts2);
}
TEST(Imgproc_IntelligentScissorsMB, lines)
{
segmentation::IntelligentScissorsMB tool;
Mat image = getTestImage3();
tool.applyImage(image);
Point source_point(30, 50);
tool.buildMap(source_point);
Point target_point(150, 50);
std::vector<Point> pts;
tool.getContour(target_point, pts);
checkContour(pts);
show(image, pts);
}
TEST(Imgproc_IntelligentScissorsMB, circles)
{
segmentation::IntelligentScissorsMB tool;
tool.setGradientMagnitudeMaxLimit(10);
Mat image = getTestImage4();
tool.applyImage(image);
Point source_point(50, 50);
tool.buildMap(source_point);
Point target_point(150, 50);
std::vector<Point> pts;
tool.getContour(target_point, pts);
checkContour(pts);
show(image, pts);
}
TEST(Imgproc_IntelligentScissorsMB, circles_gradient)
{
segmentation::IntelligentScissorsMB tool;
Mat image = getTestImage5();
tool.applyImage(image);
Point source_point(50, 50);
tool.buildMap(source_point);
Point target_point(150, 50);
std::vector<Point> pts;
tool.getContour(target_point, pts);
checkContour(pts);
show(image, pts);
}
TEST(Imgproc_IntelligentScissorsMB, grayscale)
{
segmentation::IntelligentScissorsMB tool;
Mat image = getTestImageGray();
tool.applyImage(image);
Point source_point(275, 63);
tool.buildMap(source_point);
Point target_point(413, 155);
std::vector<Point> pts;
tool.getContour(target_point, pts);
checkContour(pts, false, 2);
show(image, pts);
}
TEST(Imgproc_IntelligentScissorsMB, check_features_grayscale_1_0_0_zerro_crossing_with_limit)
{
segmentation::IntelligentScissorsMB tool;
tool.setEdgeFeatureZeroCrossingParameters(64);
tool.setWeights(1.0f, 0.0f, 0.0f);
Mat image = getTestImageGray();
tool.applyImage(image);
Point source_point(275, 63);
tool.buildMap(source_point);
Point target_point(413, 155);
std::vector<Point> pts;
tool.getContour(target_point, pts);
checkContour(pts, false, 11);
show(image, pts);
}
TEST(Imgproc_IntelligentScissorsMB, check_features_grayscale_1_0_0_canny)
{
segmentation::IntelligentScissorsMB tool;
tool.setEdgeFeatureCannyParameters(50, 100);
tool.setWeights(1.0f, 0.0f, 0.0f);
Mat image = getTestImageGray();
tool.applyImage(image);
Point source_point(275, 63);
tool.buildMap(source_point);
Point target_point(413, 155);
std::vector<Point> pts;
tool.getContour(target_point, pts);
checkContour(pts, false, 6);
show(image, pts);
}
TEST(Imgproc_IntelligentScissorsMB, check_features_grayscale_0_1_0)
{
segmentation::IntelligentScissorsMB tool;
tool.setWeights(0.0f, 1.0f, 0.0f);
Mat image = getTestImageGray();
tool.applyImage(image);
Point source_point(275, 63);
tool.buildMap(source_point);
Point target_point(413, 155);
std::vector<Point> pts;
tool.getContour(target_point, pts);
checkContour(pts, false, 4);
show(image, pts);
}
TEST(Imgproc_IntelligentScissorsMB, check_features_grayscale_0_0_1)
{
segmentation::IntelligentScissorsMB tool;
tool.setWeights(0.0f, 0.0f, 1.0f);
Mat image = getTestImageGray();
tool.applyImage(image);
Point source_point(275, 63);
tool.buildMap(source_point);
Point target_point(413, 155);
std::vector<Point> pts;
tool.getContour(target_point, pts);
checkContour(pts, false, 2);
show(image, pts);
}
TEST(Imgproc_IntelligentScissorsMB, color)
{
segmentation::IntelligentScissorsMB tool;
Mat image = getTestImageColor();
tool.applyImage(image);
Point source_point(275, 63);
tool.buildMap(source_point);
Point target_point(413, 155);
std::vector<Point> pts;
tool.getContour(target_point, pts);
checkContour(pts, false, 2);
show(image, pts);
}
TEST(Imgproc_IntelligentScissorsMB, color_canny)
{
segmentation::IntelligentScissorsMB tool;
tool.setEdgeFeatureCannyParameters(32, 100);
Mat image = getTestImageColor();
tool.applyImage(image);
Point source_point(275, 63);
tool.buildMap(source_point);
Point target_point(413, 155);
std::vector<Point> pts;
tool.getContour(target_point, pts);
checkContour(pts, false, 2);
show(image, pts);
}
TEST(Imgproc_IntelligentScissorsMB, color_custom_features_invalid)
{
segmentation::IntelligentScissorsMB tool;
ASSERT_ANY_THROW(tool.applyImageFeatures(noArray(), noArray(), noArray()));
}
TEST(Imgproc_IntelligentScissorsMB, color_custom_features_edge)
{
segmentation::IntelligentScissorsMB tool;
Mat image = getTestImageColor();
Mat canny_edges;
Canny(image, canny_edges, 32, 100, 5);
Mat binary_edge_feature;
cv::threshold(canny_edges, binary_edge_feature, 254, 1, THRESH_BINARY_INV);
tool.applyImageFeatures(binary_edge_feature, noArray(), noArray(), image);
Point source_point(275, 63);
tool.buildMap(source_point);
Point target_point(413, 155);
std::vector<Point> pts;
tool.getContour(target_point, pts);
checkContour(pts, false, 2);
show(image, pts);
}
TEST(Imgproc_IntelligentScissorsMB, color_custom_features_all)
{
segmentation::IntelligentScissorsMB tool;
tool.setWeights(0.9f, 0.0f, 0.1f);
Mat image = getTestImageColor();
Mat canny_edges;
Canny(image, canny_edges, 50, 100, 5);
Mat binary_edge_feature; // 0, 1 values
cv::threshold(canny_edges, binary_edge_feature, 254, 1, THRESH_BINARY_INV);
Mat_<Point2f> gradient_direction(image.size(), Point2f(0, 0)); // normalized
Mat_<float> gradient_magnitude(image.size(), 0); // cost function
tool.applyImageFeatures(binary_edge_feature, gradient_direction, gradient_magnitude);
Point source_point(275, 63);
tool.buildMap(source_point);
Point target_point(413, 155);
std::vector<Point> pts;
tool.getContour(target_point, pts);
checkContour(pts, false, 9);
show(image, pts);
}
TEST(Imgproc_IntelligentScissorsMB, color_custom_features_edge_magnitude)
{
segmentation::IntelligentScissorsMB tool;
tool.setWeights(0.9f, 0.0f, 0.1f);
Mat image = getTestImageColor();
Mat canny_edges;
Canny(image, canny_edges, 50, 100, 5);
Mat binary_edge_feature; // 0, 1 values
cv::threshold(canny_edges, binary_edge_feature, 254, 1, THRESH_BINARY_INV);
Mat_<float> gradient_magnitude(image.size(), 0); // cost function
tool.applyImageFeatures(binary_edge_feature, noArray(), gradient_magnitude);
Point source_point(275, 63);
tool.buildMap(source_point);
Point target_point(413, 155);
std::vector<Point> pts;
tool.getContour(target_point, pts);
checkContour(pts, false, 9);
show(image, pts);
}
}} // namespace