|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
|
|
|
|
// Copyright (C) 2016, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
|
|
|
|
/*
|
|
|
|
Test for Tensorflow models loading
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#include "npy_blob.hpp"
|
|
|
|
|
|
|
|
namespace cvtest
|
|
|
|
{
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::dnn;
|
|
|
|
|
|
|
|
template<typename TString>
|
|
|
|
static std::string _tf(TString filename)
|
|
|
|
{
|
|
|
|
return (getOpenCVExtraDir() + "/dnn/") + filename;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Test_TensorFlow, read_inception)
|
|
|
|
{
|
|
|
|
Net net;
|
|
|
|
{
|
|
|
|
const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false);
|
|
|
|
Ptr<Importer> importer = createTensorflowImporter(model);
|
|
|
|
ASSERT_TRUE(importer != NULL);
|
|
|
|
importer->populateNet(net);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat sample = imread(_tf("grace_hopper_227.png"));
|
|
|
|
ASSERT_TRUE(!sample.empty());
|
|
|
|
Mat input;
|
|
|
|
resize(sample, input, Size(224, 224));
|
|
|
|
input -= 128; // mean sub
|
|
|
|
|
|
|
|
Mat inputBlob = blobFromImage(input);
|
|
|
|
|
|
|
|
net.setInput(inputBlob, "input");
|
|
|
|
Mat out = net.forward("softmax2");
|
|
|
|
|
|
|
|
std::cout << out.dims << std::endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Test_TensorFlow, inception_accuracy)
|
|
|
|
{
|
|
|
|
Net net;
|
|
|
|
{
|
|
|
|
const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false);
|
|
|
|
Ptr<Importer> importer = createTensorflowImporter(model);
|
|
|
|
ASSERT_TRUE(importer != NULL);
|
|
|
|
importer->populateNet(net);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat sample = imread(_tf("grace_hopper_227.png"));
|
|
|
|
ASSERT_TRUE(!sample.empty());
|
|
|
|
resize(sample, sample, Size(224, 224));
|
|
|
|
Mat inputBlob = blobFromImage(sample);
|
|
|
|
|
|
|
|
net.setInput(inputBlob, "input");
|
|
|
|
Mat out = net.forward("softmax2");
|
|
|
|
|
|
|
|
Mat ref = blobFromNPY(_tf("tf_inception_prob.npy"));
|
|
|
|
|
|
|
|
normAssert(ref, out);
|
|
|
|
}
|
|
|
|
|
|
|
|
static std::string path(const std::string& file)
|
|
|
|
{
|
|
|
|
return findDataFile("dnn/tensorflow/" + file, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void runTensorFlowNet(const std::string& prefix)
|
|
|
|
{
|
|
|
|
std::string netPath = path(prefix + "_net.pb");
|
|
|
|
std::string inpPath = path(prefix + "_in.npy");
|
|
|
|
std::string outPath = path(prefix + "_out.npy");
|
|
|
|
|
|
|
|
Net net = readNetFromTensorflow(netPath);
|
|
|
|
|
|
|
|
cv::Mat input = blobFromNPY(inpPath);
|
|
|
|
cv::Mat target = blobFromNPY(outPath);
|
|
|
|
|
|
|
|
net.setInput(input);
|
|
|
|
cv::Mat output = net.forward();
|
|
|
|
normAssert(target, output);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Test_TensorFlow, single_conv)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("single_conv");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Test_TensorFlow, padding)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("padding_same");
|
|
|
|
runTensorFlowNet("padding_valid");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Test_TensorFlow, eltwise_add_mul)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("eltwise_add_mul");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Test_TensorFlow, pad_and_concat)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("pad_and_concat");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Test_TensorFlow, fused_batch_norm)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("fused_batch_norm");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Test_TensorFlow, pooling)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("max_pool_even");
|
|
|
|
runTensorFlowNet("max_pool_odd_valid");
|
|
|
|
runTensorFlowNet("max_pool_odd_same");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Test_TensorFlow, deconvolution)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("deconvolution");
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|