|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include "opencv2/core/core_c.h"
|
|
|
|
|
|
|
|
namespace cvtest
|
|
|
|
{
|
|
|
|
|
|
|
|
static const int default_test_case_count = 500;
|
|
|
|
static const int default_max_log_array_size = 9;
|
|
|
|
|
|
|
|
ArrayTest::ArrayTest()
|
|
|
|
{
|
|
|
|
test_case_count = default_test_case_count;
|
|
|
|
|
|
|
|
iplimage_allowed = true;
|
|
|
|
cvmat_allowed = true;
|
|
|
|
optional_mask = false;
|
|
|
|
min_log_array_size = 0;
|
|
|
|
max_log_array_size = default_max_log_array_size;
|
|
|
|
element_wise_relative_error = true;
|
|
|
|
|
|
|
|
test_array.resize(MAX_ARR);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ArrayTest::~ArrayTest()
|
|
|
|
{
|
|
|
|
clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ArrayTest::clear()
|
|
|
|
{
|
|
|
|
for( size_t i = 0; i < test_array.size(); i++ )
|
|
|
|
{
|
|
|
|
for( size_t j = 0; j < test_array[i].size(); j++ )
|
|
|
|
cvRelease( &test_array[i][j] );
|
|
|
|
}
|
|
|
|
BaseTest::clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int ArrayTest::read_params( const cv::FileStorage& fs )
|
|
|
|
{
|
|
|
|
int code = BaseTest::read_params( fs );
|
|
|
|
if( code < 0 )
|
|
|
|
return code;
|
|
|
|
|
|
|
|
read( find_param( fs, "min_log_array_size" ), min_log_array_size, min_log_array_size );
|
|
|
|
read( find_param( fs, "max_log_array_size" ), max_log_array_size, max_log_array_size );
|
|
|
|
read( find_param( fs, "test_case_count" ), test_case_count, test_case_count );
|
|
|
|
test_case_count = cvRound( test_case_count*ts->get_test_case_count_scale() );
|
|
|
|
|
|
|
|
min_log_array_size = clipInt( min_log_array_size, 0, 20 );
|
|
|
|
max_log_array_size = clipInt( max_log_array_size, min_log_array_size, 20 );
|
|
|
|
test_case_count = clipInt( test_case_count, 0, 100000 );
|
|
|
|
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ArrayTest::get_test_array_types_and_sizes( int /*test_case_idx*/, vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
Size size;
|
|
|
|
double val;
|
|
|
|
size_t i, j;
|
|
|
|
|
|
|
|
val = randReal(rng) * (max_log_array_size - min_log_array_size) + min_log_array_size;
|
|
|
|
size.width = cvRound( exp(val*CV_LOG2) );
|
|
|
|
val = randReal(rng) * (max_log_array_size - min_log_array_size) + min_log_array_size;
|
|
|
|
size.height = cvRound( exp(val*CV_LOG2) );
|
|
|
|
|
|
|
|
for( i = 0; i < test_array.size(); i++ )
|
|
|
|
{
|
|
|
|
size_t sizei = test_array[i].size();
|
|
|
|
for( j = 0; j < sizei; j++ )
|
|
|
|
{
|
|
|
|
sizes[i][j] = size;
|
|
|
|
types[i][j] = CV_8UC1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static const unsigned int icvTsTypeToDepth[] =
|
|
|
|
{
|
|
|
|
IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16U, IPL_DEPTH_16S,
|
|
|
|
IPL_DEPTH_32S, IPL_DEPTH_32F, IPL_DEPTH_64F
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
int ArrayTest::prepare_test_case( int test_case_idx )
|
|
|
|
{
|
|
|
|
int code = 1;
|
|
|
|
size_t max_arr = test_array.size();
|
|
|
|
vector<vector<Size> > sizes(max_arr);
|
|
|
|
vector<vector<Size> > whole_sizes(max_arr);
|
|
|
|
vector<vector<int> > types(max_arr);
|
|
|
|
size_t i, j;
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
bool is_image = false;
|
|
|
|
|
|
|
|
for( i = 0; i < max_arr; i++ )
|
|
|
|
{
|
|
|
|
size_t sizei = std::max(test_array[i].size(), (size_t)1);
|
|
|
|
sizes[i].resize(sizei);
|
|
|
|
types[i].resize(sizei);
|
|
|
|
whole_sizes[i].resize(sizei);
|
|
|
|
}
|
|
|
|
|
|
|
|
get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
|
|
|
|
|
|
|
for( i = 0; i < max_arr; i++ )
|
|
|
|
{
|
|
|
|
size_t sizei = test_array[i].size();
|
|
|
|
for( j = 0; j < sizei; j++ )
|
|
|
|
{
|
|
|
|
unsigned t = randInt(rng);
|
|
|
|
bool create_mask = true, use_roi = false;
|
|
|
|
CvSize size = cvSize(sizes[i][j]), whole_size = size;
|
|
|
|
CvRect roi = CV_STRUCT_INITIALIZER;
|
|
|
|
|
|
|
|
is_image = !cvmat_allowed ? true : iplimage_allowed ? (t & 1) != 0 : false;
|
|
|
|
create_mask = (t & 6) == 0; // ~ each of 3 tests will use mask
|
|
|
|
use_roi = (t & 8) != 0;
|
|
|
|
if( use_roi )
|
|
|
|
{
|
|
|
|
whole_size.width += randInt(rng) % 10;
|
|
|
|
whole_size.height += randInt(rng) % 10;
|
|
|
|
}
|
|
|
|
|
|
|
|
cvRelease( &test_array[i][j] );
|
|
|
|
if( size.width > 0 && size.height > 0 &&
|
|
|
|
types[i][j] >= 0 && (i != MASK || create_mask) )
|
|
|
|
{
|
|
|
|
if( use_roi )
|
|
|
|
{
|
|
|
|
roi.width = size.width;
|
|
|
|
roi.height = size.height;
|
|
|
|
if( whole_size.width > size.width )
|
|
|
|
roi.x = randInt(rng) % (whole_size.width - size.width);
|
|
|
|
|
|
|
|
if( whole_size.height > size.height )
|
|
|
|
roi.y = randInt(rng) % (whole_size.height - size.height);
|
|
|
|
}
|
|
|
|
|
|
|
|
if( is_image )
|
|
|
|
{
|
|
|
|
test_array[i][j] = cvCreateImage( whole_size,
|
|
|
|
icvTsTypeToDepth[CV_MAT_DEPTH(types[i][j])], CV_MAT_CN(types[i][j]) );
|
|
|
|
if( use_roi )
|
|
|
|
cvSetImageROI( (IplImage*)test_array[i][j], roi );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
test_array[i][j] = cvCreateMat( whole_size.height, whole_size.width, types[i][j] );
|
|
|
|
if( use_roi )
|
|
|
|
{
|
|
|
|
CvMat submat, *mat = (CvMat*)test_array[i][j];
|
|
|
|
cvGetSubRect( test_array[i][j], &submat, roi );
|
|
|
|
submat.refcount = mat->refcount;
|
|
|
|
*mat = submat;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
test_mat.resize(test_array.size());
|
|
|
|
for( i = 0; i < max_arr; i++ )
|
|
|
|
{
|
|
|
|
size_t sizei = test_array[i].size();
|
|
|
|
test_mat[i].resize(sizei);
|
|
|
|
for( j = 0; j < sizei; j++ )
|
|
|
|
{
|
|
|
|
CvArr* arr = test_array[i][j];
|
|
|
|
test_mat[i][j] = cv::cvarrToMat(arr);
|
|
|
|
if( !test_mat[i][j].empty() )
|
|
|
|
fill_array( test_case_idx, (int)i, (int)j, test_mat[i][j] );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ArrayTest::get_minmax_bounds( int i, int /*j*/, int type, Scalar& low, Scalar& high )
|
|
|
|
{
|
|
|
|
double l, u;
|
|
|
|
int depth = CV_MAT_DEPTH(type);
|
|
|
|
|
|
|
|
if( i == MASK )
|
|
|
|
{
|
|
|
|
l = -2;
|
|
|
|
u = 2;
|
|
|
|
}
|
|
|
|
else if( depth < CV_32S )
|
|
|
|
{
|
|
|
|
l = getMinVal(type);
|
|
|
|
u = getMaxVal(type);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
u = depth == CV_32S ? 1000000 : 1000.;
|
|
|
|
l = -u;
|
|
|
|
}
|
|
|
|
|
|
|
|
low = Scalar::all(l);
|
|
|
|
high = Scalar::all(u);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ArrayTest::fill_array( int /*test_case_idx*/, int i, int j, Mat& arr )
|
|
|
|
{
|
|
|
|
if( i == REF_INPUT_OUTPUT )
|
|
|
|
cvtest::copy( test_mat[INPUT_OUTPUT][j], arr, Mat() );
|
|
|
|
else if( i == INPUT || i == INPUT_OUTPUT || i == MASK )
|
|
|
|
{
|
|
|
|
Scalar low, high;
|
|
|
|
|
|
|
|
get_minmax_bounds( i, j, arr.type(), low, high );
|
|
|
|
randUni( ts->get_rng(), arr, low, high );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double ArrayTest::get_success_error_level( int /*test_case_idx*/, int i, int j )
|
|
|
|
{
|
|
|
|
int elem_depth = CV_MAT_DEPTH(cvGetElemType(test_array[i][j]));
|
|
|
|
assert( i == OUTPUT || i == INPUT_OUTPUT );
|
|
|
|
return elem_depth < CV_32F ? 0 : elem_depth == CV_32F ? FLT_EPSILON*100: DBL_EPSILON*5000;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ArrayTest::prepare_to_validation( int /*test_case_idx*/ )
|
|
|
|
{
|
|
|
|
assert(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int ArrayTest::validate_test_results( int test_case_idx )
|
|
|
|
{
|
|
|
|
static const char* arr_names[] = { "input", "input/output", "output",
|
|
|
|
"ref input/output", "ref output",
|
|
|
|
"temporary", "mask" };
|
|
|
|
size_t i, j;
|
|
|
|
prepare_to_validation( test_case_idx );
|
|
|
|
|
|
|
|
for( i = 0; i < 2; i++ )
|
|
|
|
{
|
|
|
|
int i0 = i == 0 ? OUTPUT : INPUT_OUTPUT;
|
|
|
|
int i1 = i == 0 ? REF_OUTPUT : REF_INPUT_OUTPUT;
|
|
|
|
size_t sizei = test_array[i0].size();
|
|
|
|
|
|
|
|
assert( sizei == test_array[i1].size() );
|
|
|
|
for( j = 0; j < sizei; j++ )
|
|
|
|
{
|
|
|
|
double err_level;
|
|
|
|
int code;
|
|
|
|
|
|
|
|
if( !test_array[i1][j] )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
err_level = get_success_error_level( test_case_idx, i0, (int)j );
|
|
|
|
code = cmpEps2(ts, test_mat[i0][j], test_mat[i1][j], err_level, element_wise_relative_error, arr_names[i0]);
|
|
|
|
|
|
|
|
if (code == 0) continue;
|
|
|
|
|
|
|
|
for( i0 = 0; i0 < (int)test_array.size(); i0++ )
|
|
|
|
{
|
|
|
|
size_t sizei0 = test_array[i0].size();
|
|
|
|
if( i0 == REF_INPUT_OUTPUT || i0 == OUTPUT || i0 == TEMP )
|
|
|
|
continue;
|
|
|
|
for( i1 = 0; i1 < (int)sizei0; i1++ )
|
|
|
|
{
|
|
|
|
const Mat& arr = test_mat[i0][i1];
|
|
|
|
if( !arr.empty() )
|
|
|
|
{
|
|
|
|
string sizestr = vec2str(", ", &arr.size[0], arr.dims);
|
|
|
|
ts->printf( TS::LOG, "%s array %d type=%sC%d, size=(%s)\n",
|
|
|
|
arr_names[i0], i1, getTypeName(arr.depth()),
|
|
|
|
arr.channels(), sizestr.c_str() );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ts->set_failed_test_info( code );
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/* End of file. */
|