Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

653 lines
26 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
////////////////////////////////////////////////////////////////////////
//////////////////////////////// GpuMat ////////////////////////////////
////////////////////////////////////////////////////////////////////////
#if !defined (HAVE_CUDA)
namespace cv
{
namespace gpu
{
void GpuMat::upload(const Mat& /*m*/) { throw_nogpu(); }
void GpuMat::download(cv::Mat& /*m*/) const { throw_nogpu(); }
void GpuMat::copyTo( GpuMat& /*m*/ ) const { throw_nogpu(); }
void GpuMat::copyTo( GpuMat& /*m*/, const GpuMat&/* mask */) const { throw_nogpu(); }
void GpuMat::convertTo( GpuMat& /*m*/, int /*rtype*/, double /*alpha*/, double /*beta*/ ) const { throw_nogpu(); }
GpuMat& GpuMat::operator = (const Scalar& /*s*/) { throw_nogpu(); return *this; }
GpuMat& GpuMat::setTo(const Scalar& /*s*/, const GpuMat& /*mask*/) { throw_nogpu(); return *this; }
GpuMat GpuMat::reshape(int /*new_cn*/, int /*new_rows*/) const { throw_nogpu(); return GpuMat(); }
void GpuMat::create(int /*_rows*/, int /*_cols*/, int /*_type*/) { throw_nogpu(); }
void GpuMat::release() { throw_nogpu(); }
void CudaMem::create(int /*_rows*/, int /*_cols*/, int /*_type*/, int /*type_alloc*/) { throw_nogpu(); }
bool CudaMem::can_device_map_to_host() { throw_nogpu(); return false; }
void CudaMem::release() { throw_nogpu(); }
GpuMat CudaMem::createGpuMatHeader () const { throw_nogpu(); return GpuMat(); }
}
}
#else /* !defined (HAVE_CUDA) */
#define NPP_VERSION (10 * NPP_VERSION_MAJOR + NPP_VERSION_MINOR)
namespace cv
{
namespace gpu
{
namespace matrix_operations
{
void copy_to_with_mask(const DevMem2D& src, DevMem2D dst, int depth, const DevMem2D& mask, int channels, const cudaStream_t & stream = 0);
void set_to_without_mask (DevMem2D dst, int depth, const double *scalar, int channels, const cudaStream_t & stream = 0);
void set_to_with_mask (DevMem2D dst, int depth, const double *scalar, const DevMem2D& mask, int channels, const cudaStream_t & stream = 0);
void convert_to(const DevMem2D& src, int sdepth, DevMem2D dst, int ddepth, int channels, double alpha, double beta, const cudaStream_t & stream = 0);
}
}
}
void cv::gpu::GpuMat::upload(const Mat& m)
{
CV_DbgAssert(!m.empty());
create(m.size(), m.type());
cudaSafeCall( cudaMemcpy2D(data, step, m.data, m.step, cols * elemSize(), rows, cudaMemcpyHostToDevice) );
}
void cv::gpu::GpuMat::upload(const CudaMem& m, Stream& stream)
{
CV_DbgAssert(!m.empty());
stream.enqueueUpload(m, *this);
}
void cv::gpu::GpuMat::download(cv::Mat& m) const
{
CV_DbgAssert(!this->empty());
m.create(size(), type());
cudaSafeCall( cudaMemcpy2D(m.data, m.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToHost) );
}
void cv::gpu::GpuMat::download(CudaMem& m, Stream& stream) const
{
CV_DbgAssert(!m.empty());
stream.enqueueDownload(*this, m);
}
void cv::gpu::GpuMat::copyTo( GpuMat& m ) const
{
CV_DbgAssert(!this->empty());
m.create(size(), type());
cudaSafeCall( cudaMemcpy2D(m.data, m.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToDevice) );
cudaSafeCall( cudaThreadSynchronize() );
}
void cv::gpu::GpuMat::copyTo( GpuMat& mat, const GpuMat& mask ) const
{
if (mask.empty())
{
copyTo(mat);
}
else
{
mat.create(size(), type());
cv::gpu::matrix_operations::copy_to_with_mask(*this, mat, depth(), mask, channels());
}
}
namespace
{
template<int n> struct NPPTypeTraits;
template<> struct NPPTypeTraits<CV_8U> { typedef Npp8u npp_type; };
template<> struct NPPTypeTraits<CV_16U> { typedef Npp16u npp_type; };
template<> struct NPPTypeTraits<CV_16S> { typedef Npp16s npp_type; };
template<> struct NPPTypeTraits<CV_32S> { typedef Npp32s npp_type; };
template<> struct NPPTypeTraits<CV_32F> { typedef Npp32f npp_type; };
template<int SDEPTH, int DDEPTH> struct NppConvertFunc
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI);
};
template<int DDEPTH> struct NppConvertFunc<CV_32F, DDEPTH>
{
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI, NppRoundMode eRoundMode);
};
template<int SDEPTH, int DDEPTH, typename NppConvertFunc<SDEPTH, DDEPTH>::func_ptr func> struct NppCvt
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
static void cvt(const GpuMat& src, GpuMat& dst)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( func(src.ptr<src_t>(), src.step, dst.ptr<dst_t>(), dst.step, sz) );
}
};
template<int DDEPTH, typename NppConvertFunc<CV_32F, DDEPTH>::func_ptr func> struct NppCvt<CV_32F, DDEPTH, func>
{
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
static void cvt(const GpuMat& src, GpuMat& dst)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( func(src.ptr<Npp32f>(), src.step, dst.ptr<dst_t>(), dst.step, sz, NPP_RND_NEAR) );
}
};
void convertToKernelCaller(const GpuMat& src, GpuMat& dst)
{
matrix_operations::convert_to(src, src.depth(), dst, dst.depth(), src.channels(), 1.0, 0.0);
}
}
void cv::gpu::GpuMat::convertTo( GpuMat& dst, int rtype, double alpha, double beta ) const
{
bool noScale = fabs(alpha-1) < std::numeric_limits<double>::epsilon() && fabs(beta) < std::numeric_limits<double>::epsilon();
if( rtype < 0 )
rtype = type();
else
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels());
int scn = channels();
int sdepth = depth(), ddepth = CV_MAT_DEPTH(rtype);
if( sdepth == ddepth && noScale )
{
copyTo(dst);
return;
}
GpuMat temp;
const GpuMat* psrc = this;
if( sdepth != ddepth && psrc == &dst )
psrc = &(temp = *this);
dst.create( size(), rtype );
if (!noScale)
matrix_operations::convert_to(*psrc, sdepth, dst, ddepth, psrc->channels(), alpha, beta);
else
{
typedef void (*convert_caller_t)(const GpuMat& src, GpuMat& dst);
static const convert_caller_t convert_callers[8][8][4] =
{
{
{0,0,0,0},
{convertToKernelCaller, convertToKernelCaller, convertToKernelCaller, convertToKernelCaller},
{NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C4R>::cvt},
{NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C4R>::cvt},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
#if NPP_VERSION >= 32
{NppCvt<CV_8U, CV_32F, nppiConvert_8u32f_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
#else
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
#endif
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{0,0,0,0}
},
{
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{0,0,0,0},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{0,0,0,0}
},
{
{NppCvt<CV_16U, CV_8U, nppiConvert_16u8u_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,NppCvt<CV_16U, CV_8U, nppiConvert_16u8u_C4R>::cvt},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{0,0,0,0},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{NppCvt<CV_16U, CV_32S, nppiConvert_16u32s_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{NppCvt<CV_16U, CV_32F, nppiConvert_16u32f_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{0,0,0,0}
},
{
{NppCvt<CV_16S, CV_8U, nppiConvert_16s8u_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,NppCvt<CV_16S, CV_8U, nppiConvert_16s8u_C4R>::cvt},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{0,0,0,0},
{NppCvt<CV_16S, CV_32S, nppiConvert_16s32s_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{NppCvt<CV_16S, CV_32F, nppiConvert_16s32f_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{0,0,0,0}
},
{
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{0,0,0,0},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{0,0,0,0}
},
{
#if NPP_VERSION >= 32
{NppCvt<CV_32F, CV_8U, nppiConvert_32f8u_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
#else
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
#endif
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{NppCvt<CV_32F, CV_16U, nppiConvert_32f16u_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{NppCvt<CV_32F, CV_16S, nppiConvert_32f16s_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{0,0,0,0},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{0,0,0,0}
},
{
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
{0,0,0,0},
{0,0,0,0}
},
{
{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}
}
};
convert_callers[sdepth][ddepth][scn-1](*psrc, dst);
}
}
GpuMat& GpuMat::operator = (const Scalar& s)
{
setTo(s);
return *this;
}
namespace
{
template<int SDEPTH, int SCN> struct NppSetFunc
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI);
};
template<int SDEPTH> struct NppSetFunc<SDEPTH, 1>
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI);
};
template<int SDEPTH, int SCN, typename NppSetFunc<SDEPTH, SCN>::func_ptr func> struct NppSet
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void set(GpuMat& src, const Scalar& s)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Scalar_<src_t> nppS = s;
nppSafeCall( func(nppS.val, src.ptr<src_t>(), src.step, sz) );
}
};
template<int SDEPTH, typename NppSetFunc<SDEPTH, 1>::func_ptr func> struct NppSet<SDEPTH, 1, func>
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void set(GpuMat& src, const Scalar& s)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Scalar_<src_t> nppS = s;
nppSafeCall( func(nppS[0], src.ptr<src_t>(), src.step, sz) );
}
};
void kernelSet(GpuMat& src, const Scalar& s)
{
matrix_operations::set_to_without_mask(src, src.depth(), s.val, src.channels());
}
template<int SDEPTH, int SCN> struct NppSetMaskFunc
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
};
template<int SDEPTH> struct NppSetMaskFunc<SDEPTH, 1>
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
};
template<int SDEPTH, int SCN, typename NppSetMaskFunc<SDEPTH, SCN>::func_ptr func> struct NppSetMask
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void set(GpuMat& src, const Scalar& s, const GpuMat& mask)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Scalar_<src_t> nppS = s;
nppSafeCall( func(nppS.val, src.ptr<src_t>(), src.step, sz, mask.ptr<Npp8u>(), mask.step) );
}
};
template<int SDEPTH, typename NppSetMaskFunc<SDEPTH, 1>::func_ptr func> struct NppSetMask<SDEPTH, 1, func>
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void set(GpuMat& src, const Scalar& s, const GpuMat& mask)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Scalar_<src_t> nppS = s;
nppSafeCall( func(nppS[0], src.ptr<src_t>(), src.step, sz, mask.ptr<Npp8u>(), mask.step) );
}
};
void kernelSetMask(GpuMat& src, const Scalar& s, const GpuMat& mask)
{
matrix_operations::set_to_with_mask(src, src.depth(), s.val, mask, src.channels());
}
}
GpuMat& GpuMat::setTo(const Scalar& s, const GpuMat& mask)
{
CV_Assert(mask.type() == CV_8UC1);
CV_DbgAssert(!this->empty());
NppiSize sz;
sz.width = cols;
sz.height = rows;
if (mask.empty())
{
typedef void (*set_caller_t)(GpuMat& src, const Scalar& s);
static const set_caller_t set_callers[8][4] =
{
{NppSet<CV_8U, 1, nppiSet_8u_C1R>::set,kernelSet,kernelSet,NppSet<CV_8U, 4, nppiSet_8u_C4R>::set},
{kernelSet,kernelSet,kernelSet,kernelSet},
#if NPP_VERSION >= 32
{NppSet<CV_16U, 1, nppiSet_16u_C1R>::set,kernelSet,kernelSet,NppSet<CV_16U, 4, nppiSet_16u_C4R>::set},
#else
{kernelSet,kernelSet,kernelSet,kernelSet},
#endif
#if NPP_VERSION >= 32
{NppSet<CV_16S, 1, nppiSet_16s_C1R>::set,kernelSet,kernelSet,NppSet<CV_16S, 4, nppiSet_16s_C4R>::set},
#else
{kernelSet,kernelSet,kernelSet,kernelSet},
#endif
#if NPP_VERSION >= 32
{NppSet<CV_32S, 1, nppiSet_32s_C1R>::set,kernelSet,kernelSet,NppSet<CV_32S, 4, nppiSet_32s_C4R>::set},
#else
{NppSet<CV_32S, 1, nppiSet_32s_C1R>::set,kernelSet,kernelSet,kernelSet},
#endif
#if NPP_VERSION >= 32
{NppSet<CV_32F, 1, nppiSet_32f_C1R>::set,kernelSet,kernelSet,NppSet<CV_32F, 4, nppiSet_32f_C4R>::set},
#else
{NppSet<CV_32F, 1, nppiSet_32f_C1R>::set,kernelSet,kernelSet,kernelSet},
#endif
{kernelSet,kernelSet,kernelSet,kernelSet},
{0,0,0,0}
};
set_callers[depth()][channels()-1](*this, s);
}
else
{
#if NPP_VERSION >= 32
typedef void (*set_caller_t)(GpuMat& src, const Scalar& s, const GpuMat& mask);
static const set_caller_t set_callers[8][4] =
{
{NppSetMask<CV_8U, 1, nppiSet_8u_C1MR>::set,kernelSetMask,kernelSetMask,NppSetMask<CV_8U, 4, nppiSet_8u_C4MR>::set},
{kernelSetMask,kernelSetMask,kernelSetMask,kernelSetMask},
{NppSetMask<CV_16U, 1, nppiSet_16u_C1MR>::set,kernelSetMask,kernelSetMask,NppSetMask<CV_16U, 4, nppiSet_16u_C4MR>::set},
{NppSetMask<CV_16S, 1, nppiSet_16s_C1MR>::set,kernelSetMask,kernelSetMask,NppSetMask<CV_16S, 4, nppiSet_16s_C4MR>::set},
{NppSetMask<CV_32S, 1, nppiSet_32s_C1MR>::set,kernelSetMask,kernelSetMask,NppSetMask<CV_32S, 4, nppiSet_32s_C4MR>::set},
{NppSetMask<CV_32F, 1, nppiSet_32f_C1MR>::set,kernelSetMask,kernelSetMask,NppSetMask<CV_32F, 4, nppiSet_32f_C4MR>::set},
{kernelSetMask,kernelSetMask,kernelSetMask,kernelSetMask},
{0,0,0,0}
};
set_callers[depth()][channels()-1](*this, s, mask);
#else
kernelSetMask(*this, s, mask);
#endif
}
return *this;
}
GpuMat cv::gpu::GpuMat::reshape(int new_cn, int new_rows) const
{
GpuMat hdr = *this;
int cn = channels();
if( new_cn == 0 )
new_cn = cn;
int total_width = cols * cn;
if( (new_cn > total_width || total_width % new_cn != 0) && new_rows == 0 )
new_rows = rows * total_width / new_cn;
if( new_rows != 0 && new_rows != rows )
{
int total_size = total_width * rows;
if( !isContinuous() )
CV_Error( CV_BadStep, "The matrix is not continuous, thus its number of rows can not be changed" );
if( (unsigned)new_rows > (unsigned)total_size )
CV_Error( CV_StsOutOfRange, "Bad new number of rows" );
total_width = total_size / new_rows;
if( total_width * new_rows != total_size )
CV_Error( CV_StsBadArg, "The total number of matrix elements is not divisible by the new number of rows" );
hdr.rows = new_rows;
hdr.step = total_width * elemSize1();
}
int new_width = total_width / new_cn;
if( new_width * new_cn != total_width )
CV_Error( CV_BadNumChannels, "The total width is not divisible by the new number of channels" );
hdr.cols = new_width;
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn-1) << CV_CN_SHIFT);
return hdr;
}
void cv::gpu::GpuMat::create(int _rows, int _cols, int _type)
{
_type &= TYPE_MASK;
if( rows == _rows && cols == _cols && type() == _type && data )
return;
if( data )
release();
CV_DbgAssert( _rows >= 0 && _cols >= 0 );
if( _rows > 0 && _cols > 0 )
{
flags = Mat::MAGIC_VAL + _type;
rows = _rows;
cols = _cols;
size_t esz = elemSize();
void *dev_ptr;
cudaSafeCall( cudaMallocPitch(&dev_ptr, &step, esz * cols, rows) );
if (esz * cols == step)
flags |= Mat::CONTINUOUS_FLAG;
int64 _nettosize = (int64)step*rows;
size_t nettosize = (size_t)_nettosize;
datastart = data = (uchar*)dev_ptr;
dataend = data + nettosize;
refcount = (int*)fastMalloc(sizeof(*refcount));
*refcount = 1;
}
}
void cv::gpu::GpuMat::release()
{
if( refcount && CV_XADD(refcount, -1) == 1 )
{
fastFree(refcount);
cudaSafeCall( cudaFree(datastart) );
}
data = datastart = dataend = 0;
step = rows = cols = 0;
refcount = 0;
}
///////////////////////////////////////////////////////////////////////
//////////////////////////////// CudaMem //////////////////////////////
///////////////////////////////////////////////////////////////////////
bool cv::gpu::CudaMem::can_device_map_to_host()
{
cudaDeviceProp prop;
cudaGetDeviceProperties(&prop, 0);
return (prop.canMapHostMemory != 0) ? true : false;
}
void cv::gpu::CudaMem::create(int _rows, int _cols, int _type, int _alloc_type)
{
if (_alloc_type == ALLOC_ZEROCOPY && !can_device_map_to_host())
cv::gpu::error("ZeroCopy is not supported by current device", __FILE__, __LINE__);
_type &= TYPE_MASK;
if( rows == _rows && cols == _cols && type() == _type && data )
return;
if( data )
release();
CV_DbgAssert( _rows >= 0 && _cols >= 0 );
if( _rows > 0 && _cols > 0 )
{
flags = Mat::MAGIC_VAL + Mat::CONTINUOUS_FLAG + _type;
rows = _rows;
cols = _cols;
step = elemSize()*cols;
int64 _nettosize = (int64)step*rows;
size_t nettosize = (size_t)_nettosize;
if( _nettosize != (int64)nettosize )
CV_Error(CV_StsNoMem, "Too big buffer is allocated");
size_t datasize = alignSize(nettosize, (int)sizeof(*refcount));
//datastart = data = (uchar*)fastMalloc(datasize + sizeof(*refcount));
alloc_type = _alloc_type;
void *ptr;
switch (alloc_type)
{
case ALLOC_PAGE_LOCKED: cudaSafeCall( cudaHostAlloc( &ptr, datasize, cudaHostAllocDefault) ); break;
case ALLOC_ZEROCOPY: cudaSafeCall( cudaHostAlloc( &ptr, datasize, cudaHostAllocMapped) ); break;
case ALLOC_WRITE_COMBINED: cudaSafeCall( cudaHostAlloc( &ptr, datasize, cudaHostAllocWriteCombined) ); break;
default: cv::gpu::error("Invalid alloc type", __FILE__, __LINE__);
}
datastart = data = (uchar*)ptr;
dataend = data + nettosize;
refcount = (int*)cv::fastMalloc(sizeof(*refcount));
*refcount = 1;
}
}
GpuMat cv::gpu::CudaMem::createGpuMatHeader () const
{
GpuMat res;
if (alloc_type == ALLOC_ZEROCOPY)
{
void *pdev;
cudaSafeCall( cudaHostGetDevicePointer( &pdev, data, 0 ) );
res = GpuMat(rows, cols, type(), pdev, step);
}
else
cv::gpu::error("Zero-copy is not supported or memory was allocated without zero-copy flag", __FILE__, __LINE__);
return res;
}
void cv::gpu::CudaMem::release()
{
if( refcount && CV_XADD(refcount, -1) == 1 )
{
cudaSafeCall( cudaFreeHost(datastart ) );
fastFree(refcount);
}
data = datastart = dataend = 0;
step = rows = cols = 0;
refcount = 0;
}
#endif /* !defined (HAVE_CUDA) */