|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
|
|
|
|
// Digital Ltd. LLC
|
|
|
|
//
|
|
|
|
// All rights reserved.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
|
|
// in the documentation and/or other materials provided with the
|
|
|
|
// distribution.
|
|
|
|
// * Neither the name of Industrial Light & Magic nor the names of
|
|
|
|
// its contributors may be used to endorse or promote products derived
|
|
|
|
// from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
//
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef INCLUDED_IMATHFUN_H
|
|
|
|
#define INCLUDED_IMATHFUN_H
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// Miscellaneous utility functions
|
|
|
|
//
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
#include "ImathLimits.h"
|
|
|
|
#include "ImathInt64.h"
|
|
|
|
|
|
|
|
namespace Imath {
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline T
|
|
|
|
abs (T a)
|
|
|
|
{
|
|
|
|
return (a > T(0)) ? a : -a;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline int
|
|
|
|
sign (T a)
|
|
|
|
{
|
|
|
|
return (a > T(0))? 1 : ((a < T(0)) ? -1 : 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class T, class Q>
|
|
|
|
inline T
|
|
|
|
lerp (T a, T b, Q t)
|
|
|
|
{
|
|
|
|
return (T) (a * (1 - t) + b * t);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class T, class Q>
|
|
|
|
inline T
|
|
|
|
ulerp (T a, T b, Q t)
|
|
|
|
{
|
|
|
|
return (T) ((a > b)? (a - (a - b) * t): (a + (b - a) * t));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline T
|
|
|
|
lerpfactor(T m, T a, T b)
|
|
|
|
{
|
|
|
|
//
|
|
|
|
// Return how far m is between a and b, that is return t such that
|
|
|
|
// if:
|
|
|
|
// t = lerpfactor(m, a, b);
|
|
|
|
// then:
|
|
|
|
// m = lerp(a, b, t);
|
|
|
|
//
|
|
|
|
// If a==b, return 0.
|
|
|
|
//
|
|
|
|
|
|
|
|
T d = b - a;
|
|
|
|
T n = m - a;
|
|
|
|
|
|
|
|
if (abs(d) > T(1) || abs(n) < limits<T>::max() * abs(d))
|
|
|
|
return n / d;
|
|
|
|
|
|
|
|
return T(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline T
|
|
|
|
clamp (T a, T l, T h)
|
|
|
|
{
|
|
|
|
return (a < l)? l : ((a > h)? h : a);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline int
|
|
|
|
cmp (T a, T b)
|
|
|
|
{
|
|
|
|
return Imath::sign (a - b);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline int
|
|
|
|
cmpt (T a, T b, T t)
|
|
|
|
{
|
|
|
|
return (Imath::abs (a - b) <= t)? 0 : cmp (a, b);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline bool
|
|
|
|
iszero (T a, T t)
|
|
|
|
{
|
|
|
|
return (Imath::abs (a) <= t) ? 1 : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class T1, class T2, class T3>
|
|
|
|
inline bool
|
|
|
|
equal (T1 a, T2 b, T3 t)
|
|
|
|
{
|
|
|
|
return Imath::abs (a - b) <= t;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline int
|
|
|
|
floor (T x)
|
|
|
|
{
|
|
|
|
return (x >= 0)? int (x): -(int (-x) + (-x > int (-x)));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline int
|
|
|
|
ceil (T x)
|
|
|
|
{
|
|
|
|
return -floor (-x);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline int
|
|
|
|
trunc (T x)
|
|
|
|
{
|
|
|
|
return (x >= 0) ? int(x) : -int(-x);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
// Integer division and remainder where the
|
|
|
|
// remainder of x/y has the same sign as x:
|
|
|
|
//
|
|
|
|
// divs(x,y) == (abs(x) / abs(y)) * (sign(x) * sign(y))
|
|
|
|
// mods(x,y) == x - y * divs(x,y)
|
|
|
|
//
|
|
|
|
|
|
|
|
inline int
|
|
|
|
divs (int x, int y)
|
|
|
|
{
|
|
|
|
return (x >= 0)? ((y >= 0)? ( x / y): -( x / -y)):
|
|
|
|
((y >= 0)? -(-x / y): (-x / -y));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline int
|
|
|
|
mods (int x, int y)
|
|
|
|
{
|
|
|
|
return (x >= 0)? ((y >= 0)? ( x % y): ( x % -y)):
|
|
|
|
((y >= 0)? -(-x % y): -(-x % -y));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
// Integer division and remainder where the
|
|
|
|
// remainder of x/y is always positive:
|
|
|
|
//
|
|
|
|
// divp(x,y) == floor (double(x) / double (y))
|
|
|
|
// modp(x,y) == x - y * divp(x,y)
|
|
|
|
//
|
|
|
|
|
|
|
|
inline int
|
|
|
|
divp (int x, int y)
|
|
|
|
{
|
|
|
|
return (x >= 0)? ((y >= 0)? ( x / y): -( x / -y)):
|
|
|
|
((y >= 0)? -((y-1-x) / y): ((-y-1-x) / -y));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline int
|
|
|
|
modp (int x, int y)
|
|
|
|
{
|
|
|
|
return x - y * divp (x, y);
|
|
|
|
}
|
|
|
|
|
|
|
|
//----------------------------------------------------------
|
|
|
|
// Successor and predecessor for floating-point numbers:
|
|
|
|
//
|
|
|
|
// succf(f) returns float(f+e), where e is the smallest
|
|
|
|
// positive number such that float(f+e) != f.
|
|
|
|
//
|
|
|
|
// predf(f) returns float(f-e), where e is the smallest
|
|
|
|
// positive number such that float(f-e) != f.
|
|
|
|
//
|
|
|
|
// succd(d) returns double(d+e), where e is the smallest
|
|
|
|
// positive number such that double(d+e) != d.
|
|
|
|
//
|
|
|
|
// predd(d) returns double(d-e), where e is the smallest
|
|
|
|
// positive number such that double(d-e) != d.
|
|
|
|
//
|
|
|
|
// Exceptions: If the input value is an infinity or a nan,
|
|
|
|
// succf(), predf(), succd(), and predd() all
|
|
|
|
// return the input value without changing it.
|
|
|
|
//
|
|
|
|
//----------------------------------------------------------
|
|
|
|
|
|
|
|
float succf (float f);
|
|
|
|
float predf (float f);
|
|
|
|
|
|
|
|
double succd (double d);
|
|
|
|
double predd (double d);
|
|
|
|
|
|
|
|
//
|
|
|
|
// Return true if the number is not a NaN or Infinity.
|
|
|
|
//
|
|
|
|
|
|
|
|
inline bool
|
|
|
|
finitef (float f)
|
|
|
|
{
|
|
|
|
union {float f; int i;} u;
|
|
|
|
u.f = f;
|
|
|
|
|
|
|
|
return (u.i & 0x7f800000) != 0x7f800000;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool
|
|
|
|
finited (double d)
|
|
|
|
{
|
|
|
|
union {double d; Int64 i;} u;
|
|
|
|
u.d = d;
|
|
|
|
|
|
|
|
return (u.i & 0x7ff0000000000000LL) != 0x7ff0000000000000LL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
} // namespace Imath
|
|
|
|
|
|
|
|
#endif
|