|
|
|
//M*//////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
/************************************************************************************\
|
|
|
|
This is improved variant of chessboard corner detection algorithm that
|
|
|
|
uses a graph of connected quads. It is based on the code contributed
|
|
|
|
by Vladimir Vezhnevets and Philip Gruebele.
|
|
|
|
Here is the copyright notice from the original Vladimir's code:
|
|
|
|
===============================================================
|
|
|
|
|
|
|
|
The algorithms developed and implemented by Vezhnevets Vldimir
|
|
|
|
aka Dead Moroz (vvp@graphics.cs.msu.ru)
|
|
|
|
See http://graphics.cs.msu.su/en/research/calibration/opencv.html
|
|
|
|
for detailed information.
|
|
|
|
|
|
|
|
Reliability additions and modifications made by Philip Gruebele.
|
|
|
|
<a href="mailto:pgruebele@cox.net">pgruebele@cox.net</a>
|
|
|
|
|
|
|
|
Some further improvements for detection of partially ocluded boards at non-ideal
|
|
|
|
lighting conditions have been made by Alex Bovyrin and Kurt Kolonige
|
|
|
|
|
|
|
|
\************************************************************************************/
|
|
|
|
|
|
|
|
/************************************************************************************\
|
|
|
|
This version adds a new and improved variant of chessboard corner detection
|
|
|
|
that works better in poor lighting condition. It is based on work from
|
|
|
|
Oliver Schreer and Stefano Masneri. This method works faster than the previous
|
|
|
|
one and reverts back to the older method in case no chessboard detection is
|
|
|
|
possible. Overall performance improves also because now the method avoids
|
|
|
|
performing the same computation multiple times when not necessary.
|
|
|
|
|
|
|
|
\************************************************************************************/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include "opencv2/imgproc/imgproc_c.h"
|
|
|
|
#include "opencv2/calib3d/calib3d_c.h"
|
|
|
|
#include "circlesgrid.hpp"
|
|
|
|
#include <stdarg.h>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
//#define ENABLE_TRIM_COL_ROW
|
|
|
|
|
|
|
|
//#define DEBUG_CHESSBOARD
|
|
|
|
|
|
|
|
#ifdef DEBUG_CHESSBOARD
|
|
|
|
static int PRINTF( const char* fmt, ... )
|
|
|
|
{
|
|
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
|
|
return vprintf(fmt, args);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
#define PRINTF(...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//=====================================================================================
|
|
|
|
// Implementation for the enhanced calibration object detection
|
|
|
|
//=====================================================================================
|
|
|
|
|
|
|
|
#define MAX_CONTOUR_APPROX 7
|
|
|
|
|
|
|
|
struct CvContourEx
|
|
|
|
{
|
|
|
|
CV_CONTOUR_FIELDS()
|
|
|
|
int counter;
|
|
|
|
};
|
|
|
|
|
|
|
|
//=====================================================================================
|
|
|
|
|
|
|
|
/// Corner info structure
|
|
|
|
/** This structure stores information about the chessboard corner.*/
|
|
|
|
struct CvCBCorner
|
|
|
|
{
|
|
|
|
CvPoint2D32f pt; // Coordinates of the corner
|
|
|
|
int row; // Board row index
|
|
|
|
int count; // Number of neighbor corners
|
|
|
|
struct CvCBCorner* neighbors[4]; // Neighbor corners
|
|
|
|
|
|
|
|
float meanDist(int *_n) const
|
|
|
|
{
|
|
|
|
float sum = 0;
|
|
|
|
int n = 0;
|
|
|
|
for( int i = 0; i < 4; i++ )
|
|
|
|
{
|
|
|
|
if( neighbors[i] )
|
|
|
|
{
|
|
|
|
float dx = neighbors[i]->pt.x - pt.x;
|
|
|
|
float dy = neighbors[i]->pt.y - pt.y;
|
|
|
|
sum += sqrt(dx*dx + dy*dy);
|
|
|
|
n++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if(_n)
|
|
|
|
*_n = n;
|
|
|
|
return sum/MAX(n,1);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
//=====================================================================================
|
|
|
|
/// Quadrangle contour info structure
|
|
|
|
/** This structure stores information about the chessboard quadrange.*/
|
|
|
|
struct CvCBQuad
|
|
|
|
{
|
|
|
|
int count; // Number of quad neighbors
|
|
|
|
int group_idx; // quad group ID
|
|
|
|
int row, col; // row and column of this quad
|
|
|
|
bool ordered; // true if corners/neighbors are ordered counter-clockwise
|
|
|
|
float edge_len; // quad edge len, in pix^2
|
|
|
|
// neighbors and corners are synced, i.e., neighbor 0 shares corner 0
|
|
|
|
CvCBCorner *corners[4]; // Coordinates of quad corners
|
|
|
|
struct CvCBQuad *neighbors[4]; // Pointers of quad neighbors
|
|
|
|
};
|
|
|
|
|
|
|
|
//=====================================================================================
|
|
|
|
|
|
|
|
#ifdef DEBUG_CHESSBOARD
|
|
|
|
#include "opencv2/highgui.hpp"
|
|
|
|
#include "opencv2/imgproc.hpp"
|
|
|
|
static void SHOW(const std::string & name, Mat & img)
|
|
|
|
{
|
|
|
|
imshow(name, img);
|
|
|
|
while ((uchar)waitKey(0) != 'q') {}
|
|
|
|
}
|
|
|
|
static void SHOW_QUADS(const std::string & name, const Mat & img_, CvCBQuad * quads, int quads_count)
|
|
|
|
{
|
|
|
|
Mat img = img_.clone();
|
|
|
|
if (img.channels() == 1)
|
|
|
|
cvtColor(img, img, COLOR_GRAY2BGR);
|
|
|
|
for (int i = 0; i < quads_count; ++i)
|
|
|
|
{
|
|
|
|
CvCBQuad & quad = quads[i];
|
|
|
|
for (int j = 0; j < 4; ++j)
|
|
|
|
{
|
|
|
|
line(img, quad.corners[j]->pt, quad.corners[(j + 1) % 4]->pt, Scalar(0, 240, 0), 1, LINE_AA);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
imshow(name, img);
|
|
|
|
while ((uchar)waitKey(0) != 'q') {}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
#define SHOW(...)
|
|
|
|
#define SHOW_QUADS(...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//=====================================================================================
|
|
|
|
|
|
|
|
static int icvGenerateQuads( CvCBQuad **quads, CvCBCorner **corners,
|
|
|
|
CvMemStorage *storage, const Mat &image_, int flags, int *max_quad_buf_size);
|
|
|
|
|
|
|
|
static bool processQuads(CvCBQuad *quads, int quad_count, CvSize pattern_size, int max_quad_buf_size,
|
|
|
|
CvMemStorage * storage, CvCBCorner *corners, CvPoint2D32f *out_corners, int *out_corner_count, int & prev_sqr_size);
|
|
|
|
|
|
|
|
/*static int
|
|
|
|
icvGenerateQuadsEx( CvCBQuad **out_quads, CvCBCorner **out_corners,
|
|
|
|
CvMemStorage *storage, CvMat *image, CvMat *thresh_img, int dilation, int flags );*/
|
|
|
|
|
|
|
|
static void icvFindQuadNeighbors( CvCBQuad *quads, int quad_count );
|
|
|
|
|
|
|
|
static int icvFindConnectedQuads( CvCBQuad *quads, int quad_count,
|
|
|
|
CvCBQuad **quad_group, int group_idx,
|
|
|
|
CvMemStorage* storage );
|
|
|
|
|
|
|
|
static int icvCheckQuadGroup( CvCBQuad **quad_group, int count,
|
|
|
|
CvCBCorner **out_corners, CvSize pattern_size );
|
|
|
|
|
|
|
|
static int icvCleanFoundConnectedQuads( int quad_count,
|
|
|
|
CvCBQuad **quads, CvSize pattern_size );
|
|
|
|
|
|
|
|
static int icvOrderFoundConnectedQuads( int quad_count, CvCBQuad **quads,
|
|
|
|
int *all_count, CvCBQuad **all_quads, CvCBCorner **corners,
|
|
|
|
CvSize pattern_size, int max_quad_buf_size, CvMemStorage* storage );
|
|
|
|
|
|
|
|
static void icvOrderQuad(CvCBQuad *quad, CvCBCorner *corner, int common);
|
|
|
|
|
|
|
|
#ifdef ENABLE_TRIM_COL_ROW
|
|
|
|
static int icvTrimCol(CvCBQuad **quads, int count, int col, int dir);
|
|
|
|
|
|
|
|
static int icvTrimRow(CvCBQuad **quads, int count, int row, int dir);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static int icvAddOuterQuad(CvCBQuad *quad, CvCBQuad **quads, int quad_count,
|
|
|
|
CvCBQuad **all_quads, int all_count, CvCBCorner **corners, int max_quad_buf_size);
|
|
|
|
|
|
|
|
static void icvRemoveQuadFromGroup(CvCBQuad **quads, int count, CvCBQuad *q0);
|
|
|
|
|
|
|
|
static int icvCheckBoardMonotony( CvPoint2D32f* corners, CvSize pattern_size );
|
|
|
|
|
|
|
|
/***************************************************************************************************/
|
|
|
|
//COMPUTE INTENSITY HISTOGRAM OF INPUT IMAGE
|
|
|
|
static int icvGetIntensityHistogram( const Mat & img, std::vector<int>& piHist )
|
|
|
|
{
|
|
|
|
// sum up all pixel in row direction and divide by number of columns
|
|
|
|
for ( int j=0; j<img.rows; j++ )
|
|
|
|
{
|
|
|
|
const uchar * row = img.ptr(j);
|
|
|
|
for ( int i=0; i<img.cols; i++ )
|
|
|
|
{
|
|
|
|
piHist[row[i]]++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/***************************************************************************************************/
|
|
|
|
//SMOOTH HISTOGRAM USING WINDOW OF SIZE 2*iWidth+1
|
|
|
|
static int icvSmoothHistogram( const std::vector<int>& piHist, std::vector<int>& piHistSmooth, int iWidth )
|
|
|
|
{
|
|
|
|
int iIdx;
|
|
|
|
for ( int i=0; i<256; i++)
|
|
|
|
{
|
|
|
|
int iSmooth = 0;
|
|
|
|
for ( int ii=-iWidth; ii<=iWidth; ii++)
|
|
|
|
{
|
|
|
|
iIdx = i+ii;
|
|
|
|
if (iIdx > 0 && iIdx < 256)
|
|
|
|
{
|
|
|
|
iSmooth += piHist[iIdx];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
piHistSmooth[i] = iSmooth/(2*iWidth+1);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/***************************************************************************************************/
|
|
|
|
//COMPUTE FAST HISTOGRAM GRADIENT
|
|
|
|
static int icvGradientOfHistogram( const std::vector<int>& piHist, std::vector<int>& piHistGrad )
|
|
|
|
{
|
|
|
|
piHistGrad[0] = 0;
|
|
|
|
for ( int i=1; i<255; i++)
|
|
|
|
{
|
|
|
|
piHistGrad[i] = piHist[i-1] - piHist[i+1];
|
|
|
|
if ( abs(piHistGrad[i]) < 100 )
|
|
|
|
{
|
|
|
|
if ( piHistGrad[i-1] == 0)
|
|
|
|
piHistGrad[i] = -100;
|
|
|
|
else
|
|
|
|
piHistGrad[i] = piHistGrad[i-1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/***************************************************************************************************/
|
|
|
|
//PERFORM SMART IMAGE THRESHOLDING BASED ON ANALYSIS OF INTENSTY HISTOGRAM
|
|
|
|
static bool icvBinarizationHistogramBased( Mat & img )
|
|
|
|
{
|
|
|
|
CV_Assert(img.channels() == 1 && img.depth() == CV_8U);
|
|
|
|
int iCols = img.cols;
|
|
|
|
int iRows = img.rows;
|
|
|
|
int iMaxPix = iCols*iRows;
|
|
|
|
int iMaxPix1 = iMaxPix/100;
|
|
|
|
const int iNumBins = 256;
|
|
|
|
std::vector<int> piHistIntensity(iNumBins, 0);
|
|
|
|
std::vector<int> piHistSmooth(iNumBins, 0);
|
|
|
|
std::vector<int> piHistGrad(iNumBins, 0);
|
|
|
|
std::vector<int> piAccumSum(iNumBins, 0);
|
|
|
|
std::vector<int> piMaxPos(20, 0);
|
|
|
|
int iThresh = 0;
|
|
|
|
int iIdx;
|
|
|
|
int iWidth = 1;
|
|
|
|
|
|
|
|
icvGetIntensityHistogram( img, piHistIntensity );
|
|
|
|
|
|
|
|
// get accumulated sum starting from bright
|
|
|
|
piAccumSum[iNumBins-1] = piHistIntensity[iNumBins-1];
|
|
|
|
for ( int i=iNumBins-2; i>=0; i-- )
|
|
|
|
{
|
|
|
|
piAccumSum[i] = piHistIntensity[i] + piAccumSum[i+1];
|
|
|
|
}
|
|
|
|
|
|
|
|
// first smooth the distribution
|
|
|
|
icvSmoothHistogram( piHistIntensity, piHistSmooth, iWidth );
|
|
|
|
|
|
|
|
// compute gradient
|
|
|
|
icvGradientOfHistogram( piHistSmooth, piHistGrad );
|
|
|
|
|
|
|
|
// check for zeros
|
|
|
|
int iCntMaxima = 0;
|
|
|
|
for ( int i=iNumBins-2; (i>2) && (iCntMaxima<20); i--)
|
|
|
|
{
|
|
|
|
if ( (piHistGrad[i-1] < 0) && (piHistGrad[i] > 0) )
|
|
|
|
{
|
|
|
|
piMaxPos[iCntMaxima] = i;
|
|
|
|
iCntMaxima++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
iIdx = 0;
|
|
|
|
int iSumAroundMax = 0;
|
|
|
|
for ( int i=0; i<iCntMaxima; i++ )
|
|
|
|
{
|
|
|
|
iIdx = piMaxPos[i];
|
|
|
|
iSumAroundMax = piHistSmooth[iIdx-1] + piHistSmooth[iIdx] + piHistSmooth[iIdx+1];
|
|
|
|
if ( iSumAroundMax < iMaxPix1 && iIdx < 64 )
|
|
|
|
{
|
|
|
|
for ( int j=i; j<iCntMaxima-1; j++ )
|
|
|
|
{
|
|
|
|
piMaxPos[j] = piMaxPos[j+1];
|
|
|
|
}
|
|
|
|
iCntMaxima--;
|
|
|
|
i--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( iCntMaxima == 1)
|
|
|
|
{
|
|
|
|
iThresh = piMaxPos[0]/2;
|
|
|
|
}
|
|
|
|
else if ( iCntMaxima == 2)
|
|
|
|
{
|
|
|
|
iThresh = (piMaxPos[0] + piMaxPos[1])/2;
|
|
|
|
}
|
|
|
|
else // iCntMaxima >= 3
|
|
|
|
{
|
|
|
|
// CHECKING THRESHOLD FOR WHITE
|
|
|
|
int iIdxAccSum = 0, iAccum = 0;
|
|
|
|
for (int i=iNumBins-1; i>0; i--)
|
|
|
|
{
|
|
|
|
iAccum += piHistIntensity[i];
|
|
|
|
// iMaxPix/18 is about 5,5%, minimum required number of pixels required for white part of chessboard
|
|
|
|
if ( iAccum > (iMaxPix/18) )
|
|
|
|
{
|
|
|
|
iIdxAccSum = i;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int iIdxBGMax = 0;
|
|
|
|
int iBrightMax = piMaxPos[0];
|
|
|
|
// printf("iBrightMax = %d\n", iBrightMax);
|
|
|
|
for ( int n=0; n<iCntMaxima-1; n++)
|
|
|
|
{
|
|
|
|
iIdxBGMax = n+1;
|
|
|
|
if ( piMaxPos[n] < iIdxAccSum )
|
|
|
|
{
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
iBrightMax = piMaxPos[n];
|
|
|
|
}
|
|
|
|
|
|
|
|
// CHECKING THRESHOLD FOR BLACK
|
|
|
|
int iMaxVal = piHistIntensity[piMaxPos[iIdxBGMax]];
|
|
|
|
|
|
|
|
//IF TOO CLOSE TO 255, jump to next maximum
|
|
|
|
if ( piMaxPos[iIdxBGMax] >= 250 && iIdxBGMax < iCntMaxima )
|
|
|
|
{
|
|
|
|
iIdxBGMax++;
|
|
|
|
iMaxVal = piHistIntensity[piMaxPos[iIdxBGMax]];
|
|
|
|
}
|
|
|
|
|
|
|
|
for ( int n=iIdxBGMax + 1; n<iCntMaxima; n++)
|
|
|
|
{
|
|
|
|
if ( piHistIntensity[piMaxPos[n]] >= iMaxVal )
|
|
|
|
{
|
|
|
|
iMaxVal = piHistIntensity[piMaxPos[n]];
|
|
|
|
iIdxBGMax = n;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//SETTING THRESHOLD FOR BINARIZATION
|
|
|
|
int iDist2 = (iBrightMax - piMaxPos[iIdxBGMax])/2;
|
|
|
|
iThresh = iBrightMax - iDist2;
|
|
|
|
PRINTF("THRESHOLD SELECTED = %d, BRIGHTMAX = %d, DARKMAX = %d\n", iThresh, iBrightMax, piMaxPos[iIdxBGMax]);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if ( iThresh > 0 )
|
|
|
|
{
|
|
|
|
for ( int jj=0; jj<iRows; jj++)
|
|
|
|
{
|
|
|
|
uchar * row = img.ptr(jj);
|
|
|
|
for ( int ii=0; ii<iCols; ii++)
|
|
|
|
{
|
|
|
|
if ( row[ii] < iThresh )
|
|
|
|
row[ii] = 0;
|
|
|
|
else
|
|
|
|
row[ii] = 255;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
CV_IMPL
|
|
|
|
int cvFindChessboardCorners( const void* arr, CvSize pattern_size,
|
|
|
|
CvPoint2D32f* out_corners, int* out_corner_count,
|
|
|
|
int flags )
|
|
|
|
{
|
|
|
|
int found = 0;
|
|
|
|
CvCBQuad *quads = 0;
|
|
|
|
CvCBCorner *corners = 0;
|
|
|
|
|
|
|
|
cv::Ptr<CvMemStorage> storage;
|
|
|
|
|
|
|
|
CV_TRY
|
|
|
|
{
|
|
|
|
int k = 0;
|
|
|
|
const int min_dilations = 0;
|
|
|
|
const int max_dilations = 7;
|
|
|
|
|
|
|
|
if( out_corner_count )
|
|
|
|
*out_corner_count = 0;
|
|
|
|
|
|
|
|
Mat img = cvarrToMat((CvMat*)arr).clone();
|
|
|
|
|
|
|
|
if( img.depth() != CV_8U || (img.channels() != 1 && img.channels() != 3 && img.channels() != 4) )
|
|
|
|
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit grayscale or color images are supported" );
|
|
|
|
|
|
|
|
if( pattern_size.width <= 2 || pattern_size.height <= 2 )
|
|
|
|
CV_Error( CV_StsOutOfRange, "Both width and height of the pattern should have bigger than 2" );
|
|
|
|
|
|
|
|
if( !out_corners )
|
|
|
|
CV_Error( CV_StsNullPtr, "Null pointer to corners" );
|
|
|
|
|
|
|
|
if (img.channels() != 1)
|
|
|
|
{
|
|
|
|
cvtColor(img, img, COLOR_BGR2GRAY);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Mat thresh_img_new = img.clone();
|
|
|
|
icvBinarizationHistogramBased( thresh_img_new ); // process image in-place
|
|
|
|
SHOW("New binarization", thresh_img_new);
|
|
|
|
|
|
|
|
if( flags & CV_CALIB_CB_FAST_CHECK)
|
|
|
|
{
|
|
|
|
//perform new method for checking chessboard using a binary image.
|
|
|
|
//image is binarised using a threshold dependent on the image histogram
|
|
|
|
if (checkChessboardBinary(thresh_img_new, pattern_size) <= 0) //fall back to the old method
|
|
|
|
{
|
|
|
|
if (checkChessboard(img, pattern_size) <= 0)
|
|
|
|
{
|
|
|
|
return found;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
storage.reset(cvCreateMemStorage(0));
|
|
|
|
|
|
|
|
int prev_sqr_size = 0;
|
|
|
|
|
|
|
|
// Try our standard "1" dilation, but if the pattern is not found, iterate the whole procedure with higher dilations.
|
|
|
|
// This is necessary because some squares simply do not separate properly with a single dilation. However,
|
|
|
|
// we want to use the minimum number of dilations possible since dilations cause the squares to become smaller,
|
|
|
|
// making it difficult to detect smaller squares.
|
|
|
|
for( int dilations = min_dilations; dilations <= max_dilations; dilations++ )
|
|
|
|
{
|
|
|
|
if (found)
|
|
|
|
break; // already found it
|
|
|
|
|
|
|
|
//USE BINARY IMAGE COMPUTED USING icvBinarizationHistogramBased METHOD
|
|
|
|
dilate( thresh_img_new, thresh_img_new, Mat(), Point(-1, -1), 1 );
|
|
|
|
|
|
|
|
// So we can find rectangles that go to the edge, we draw a white line around the image edge.
|
|
|
|
// Otherwise FindContours will miss those clipped rectangle contours.
|
|
|
|
// The border color will be the image mean, because otherwise we risk screwing up filters like cvSmooth()...
|
|
|
|
rectangle( thresh_img_new, Point(0,0), Point(thresh_img_new.cols-1, thresh_img_new.rows-1), Scalar(255,255,255), 3, LINE_8);
|
|
|
|
int max_quad_buf_size = 0;
|
|
|
|
cvFree(&quads);
|
|
|
|
cvFree(&corners);
|
|
|
|
int quad_count = icvGenerateQuads( &quads, &corners, storage, thresh_img_new, flags, &max_quad_buf_size );
|
|
|
|
PRINTF("Quad count: %d/%d\n", quad_count, (pattern_size.width/2+1)*(pattern_size.height/2+1));
|
|
|
|
SHOW_QUADS("New quads", thresh_img_new, quads, quad_count);
|
|
|
|
if (processQuads(quads, quad_count, pattern_size, max_quad_buf_size, storage, corners, out_corners, out_corner_count, prev_sqr_size))
|
|
|
|
found = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
PRINTF("Chessboard detection result 0: %d\n", found);
|
|
|
|
|
|
|
|
// revert to old, slower, method if detection failed
|
|
|
|
if (!found)
|
|
|
|
{
|
|
|
|
if( flags & CV_CALIB_CB_NORMALIZE_IMAGE )
|
|
|
|
{
|
|
|
|
equalizeHist( img, img );
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat thresh_img;
|
|
|
|
prev_sqr_size = 0;
|
|
|
|
|
|
|
|
PRINTF("Fallback to old algorithm\n");
|
|
|
|
const bool useAdaptive = flags & CV_CALIB_CB_ADAPTIVE_THRESH;
|
|
|
|
if (!useAdaptive)
|
|
|
|
{
|
|
|
|
// empiric threshold level
|
|
|
|
// thresholding performed here and not inside the cycle to save processing time
|
|
|
|
double mean = cv::mean(img).val[0];
|
|
|
|
int thresh_level = MAX(cvRound( mean - 10 ), 10);
|
|
|
|
threshold( img, thresh_img, thresh_level, 255, THRESH_BINARY );
|
|
|
|
}
|
|
|
|
//if flag CV_CALIB_CB_ADAPTIVE_THRESH is not set it doesn't make sense to iterate over k
|
|
|
|
int max_k = useAdaptive ? 6 : 1;
|
|
|
|
for( k = 0; k < max_k; k++ )
|
|
|
|
{
|
|
|
|
for( int dilations = min_dilations; dilations <= max_dilations; dilations++ )
|
|
|
|
{
|
|
|
|
if (found)
|
|
|
|
break; // already found it
|
|
|
|
|
|
|
|
// convert the input grayscale image to binary (black-n-white)
|
|
|
|
if (useAdaptive)
|
|
|
|
{
|
|
|
|
int block_size = cvRound(prev_sqr_size == 0
|
|
|
|
? MIN(img.cols, img.rows) * (k % 2 == 0 ? 0.2 : 0.1)
|
|
|
|
: prev_sqr_size * 2);
|
|
|
|
block_size = block_size | 1;
|
|
|
|
// convert to binary
|
|
|
|
adaptiveThreshold( img, thresh_img, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, block_size, (k/2)*5 );
|
|
|
|
if (dilations > 0)
|
|
|
|
dilate( thresh_img, thresh_img, Mat(), Point(-1, -1), dilations-1 );
|
|
|
|
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
dilate( thresh_img, thresh_img, Mat(), Point(-1, -1), 1 );
|
|
|
|
}
|
|
|
|
SHOW("Old binarization", thresh_img);
|
|
|
|
|
|
|
|
// So we can find rectangles that go to the edge, we draw a white line around the image edge.
|
|
|
|
// Otherwise FindContours will miss those clipped rectangle contours.
|
|
|
|
// The border color will be the image mean, because otherwise we risk screwing up filters like cvSmooth()...
|
|
|
|
rectangle( thresh_img, Point(0,0), Point(thresh_img.cols-1, thresh_img.rows-1), Scalar(255,255,255), 3, LINE_8);
|
|
|
|
int max_quad_buf_size = 0;
|
|
|
|
cvFree(&quads);
|
|
|
|
cvFree(&corners);
|
|
|
|
int quad_count = icvGenerateQuads( &quads, &corners, storage, thresh_img, flags, &max_quad_buf_size);
|
|
|
|
PRINTF("Quad count: %d/%d\n", quad_count, (pattern_size.width/2+1)*(pattern_size.height/2+1));
|
|
|
|
SHOW_QUADS("Old quads", thresh_img, quads, quad_count);
|
|
|
|
if (processQuads(quads, quad_count, pattern_size, max_quad_buf_size, storage, corners, out_corners, out_corner_count, prev_sqr_size))
|
|
|
|
found = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
PRINTF("Chessboard detection result 1: %d\n", found);
|
|
|
|
|
|
|
|
if( found )
|
|
|
|
found = icvCheckBoardMonotony( out_corners, pattern_size );
|
|
|
|
|
|
|
|
PRINTF("Chessboard detection result 2: %d\n", found);
|
|
|
|
|
|
|
|
// check that none of the found corners is too close to the image boundary
|
|
|
|
if( found )
|
|
|
|
{
|
|
|
|
const int BORDER = 8;
|
|
|
|
for( k = 0; k < pattern_size.width*pattern_size.height; k++ )
|
|
|
|
{
|
|
|
|
if( out_corners[k].x <= BORDER || out_corners[k].x > img.cols - BORDER ||
|
|
|
|
out_corners[k].y <= BORDER || out_corners[k].y > img.rows - BORDER )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
found = k == pattern_size.width*pattern_size.height;
|
|
|
|
}
|
|
|
|
|
|
|
|
PRINTF("Chessboard detection result 3: %d\n", found);
|
|
|
|
|
|
|
|
if( found )
|
|
|
|
{
|
|
|
|
if ( pattern_size.height % 2 == 0 && pattern_size.width % 2 == 0 )
|
|
|
|
{
|
|
|
|
int last_row = (pattern_size.height-1)*pattern_size.width;
|
|
|
|
double dy0 = out_corners[last_row].y - out_corners[0].y;
|
|
|
|
if( dy0 < 0 )
|
|
|
|
{
|
|
|
|
int n = pattern_size.width*pattern_size.height;
|
|
|
|
for(int i = 0; i < n/2; i++ )
|
|
|
|
{
|
|
|
|
CvPoint2D32f temp;
|
|
|
|
CV_SWAP(out_corners[i], out_corners[n-i-1], temp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
int wsize = 2;
|
|
|
|
CvMat old_img(img);
|
|
|
|
cvFindCornerSubPix( &old_img, out_corners, pattern_size.width*pattern_size.height,
|
|
|
|
cvSize(wsize, wsize), cvSize(-1,-1),
|
|
|
|
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 15, 0.1));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
CV_CATCH_ALL
|
|
|
|
{
|
|
|
|
cvFree(&quads);
|
|
|
|
cvFree(&corners);
|
|
|
|
CV_RETHROW();
|
|
|
|
}
|
|
|
|
cvFree(&quads);
|
|
|
|
cvFree(&corners);
|
|
|
|
return found;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Checks that each board row and column is pretty much monotonous curve:
|
|
|
|
// It analyzes each row and each column of the chessboard as following:
|
|
|
|
// for each corner c lying between end points in the same row/column it checks that
|
|
|
|
// the point projection to the line segment (a,b) is lying between projections
|
|
|
|
// of the neighbor corners in the same row/column.
|
|
|
|
//
|
|
|
|
// This function has been created as temporary workaround for the bug in current implementation
|
|
|
|
// of cvFindChessboardCornes that produces absolutely unordered sets of corners.
|
|
|
|
//
|
|
|
|
|
|
|
|
static int
|
|
|
|
icvCheckBoardMonotony( CvPoint2D32f* corners, CvSize pattern_size )
|
|
|
|
{
|
|
|
|
int i, j, k;
|
|
|
|
|
|
|
|
for( k = 0; k < 2; k++ )
|
|
|
|
{
|
|
|
|
for( i = 0; i < (k == 0 ? pattern_size.height : pattern_size.width); i++ )
|
|
|
|
{
|
|
|
|
CvPoint2D32f a = k == 0 ? corners[i*pattern_size.width] : corners[i];
|
|
|
|
CvPoint2D32f b = k == 0 ? corners[(i+1)*pattern_size.width-1] :
|
|
|
|
corners[(pattern_size.height-1)*pattern_size.width + i];
|
|
|
|
float prevt = 0, dx0 = b.x - a.x, dy0 = b.y - a.y;
|
|
|
|
if( fabs(dx0) + fabs(dy0) < FLT_EPSILON )
|
|
|
|
return 0;
|
|
|
|
for( j = 1; j < (k == 0 ? pattern_size.width : pattern_size.height) - 1; j++ )
|
|
|
|
{
|
|
|
|
CvPoint2D32f c = k == 0 ? corners[i*pattern_size.width + j] :
|
|
|
|
corners[j*pattern_size.width + i];
|
|
|
|
float t = ((c.x - a.x)*dx0 + (c.y - a.y)*dy0)/(dx0*dx0 + dy0*dy0);
|
|
|
|
if( t < prevt || t > 1 )
|
|
|
|
return 0;
|
|
|
|
prevt = t;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// order a group of connected quads
|
|
|
|
// order of corners:
|
|
|
|
// 0 is top left
|
|
|
|
// clockwise from there
|
|
|
|
// note: "top left" is nominal, depends on initial ordering of starting quad
|
|
|
|
// but all other quads are ordered consistently
|
|
|
|
//
|
|
|
|
// can change the number of quads in the group
|
|
|
|
// can add quads, so we need to have quad/corner arrays passed in
|
|
|
|
//
|
|
|
|
|
|
|
|
static int
|
|
|
|
icvOrderFoundConnectedQuads( int quad_count, CvCBQuad **quads,
|
|
|
|
int *all_count, CvCBQuad **all_quads, CvCBCorner **corners,
|
|
|
|
CvSize pattern_size, int max_quad_buf_size, CvMemStorage* storage )
|
|
|
|
{
|
|
|
|
cv::Ptr<CvMemStorage> temp_storage(cvCreateChildMemStorage( storage ));
|
|
|
|
CvSeq* stack = cvCreateSeq( 0, sizeof(*stack), sizeof(void*), temp_storage );
|
|
|
|
|
|
|
|
// first find an interior quad
|
|
|
|
CvCBQuad *start = NULL;
|
|
|
|
for (int i=0; i<quad_count; i++)
|
|
|
|
{
|
|
|
|
if (quads[i]->count == 4)
|
|
|
|
{
|
|
|
|
start = quads[i];
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (start == NULL)
|
|
|
|
return 0; // no 4-connected quad
|
|
|
|
|
|
|
|
// start with first one, assign rows/cols
|
|
|
|
int row_min = 0, col_min = 0, row_max=0, col_max = 0;
|
|
|
|
|
|
|
|
std::map<int, int> col_hist;
|
|
|
|
std::map<int, int> row_hist;
|
|
|
|
|
|
|
|
cvSeqPush(stack, &start);
|
|
|
|
start->row = 0;
|
|
|
|
start->col = 0;
|
|
|
|
start->ordered = true;
|
|
|
|
|
|
|
|
// Recursively order the quads so that all position numbers (e.g.,
|
|
|
|
// 0,1,2,3) are in the at the same relative corner (e.g., lower right).
|
|
|
|
|
|
|
|
while( stack->total )
|
|
|
|
{
|
|
|
|
CvCBQuad* q;
|
|
|
|
cvSeqPop( stack, &q );
|
|
|
|
int col = q->col;
|
|
|
|
int row = q->row;
|
|
|
|
col_hist[col]++;
|
|
|
|
row_hist[row]++;
|
|
|
|
|
|
|
|
// check min/max
|
|
|
|
if (row > row_max) row_max = row;
|
|
|
|
if (row < row_min) row_min = row;
|
|
|
|
if (col > col_max) col_max = col;
|
|
|
|
if (col < col_min) col_min = col;
|
|
|
|
|
|
|
|
for(int i = 0; i < 4; i++ )
|
|
|
|
{
|
|
|
|
CvCBQuad *neighbor = q->neighbors[i];
|
|
|
|
switch(i) // adjust col, row for this quad
|
|
|
|
{ // start at top left, go clockwise
|
|
|
|
case 0:
|
|
|
|
row--; col--; break;
|
|
|
|
case 1:
|
|
|
|
col += 2; break;
|
|
|
|
case 2:
|
|
|
|
row += 2; break;
|
|
|
|
case 3:
|
|
|
|
col -= 2; break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// just do inside quads
|
|
|
|
if (neighbor && neighbor->ordered == false && neighbor->count == 4)
|
|
|
|
{
|
|
|
|
PRINTF("col: %d row: %d\n", col, row);
|
|
|
|
icvOrderQuad(neighbor, q->corners[i], (i+2)%4); // set in order
|
|
|
|
neighbor->ordered = true;
|
|
|
|
neighbor->row = row;
|
|
|
|
neighbor->col = col;
|
|
|
|
cvSeqPush( stack, &neighbor );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i=col_min; i<=col_max; i++)
|
|
|
|
PRINTF("HIST[%d] = %d\n", i, col_hist[i]);
|
|
|
|
|
|
|
|
// analyze inner quad structure
|
|
|
|
int w = pattern_size.width - 1;
|
|
|
|
int h = pattern_size.height - 1;
|
|
|
|
int drow = row_max - row_min + 1;
|
|
|
|
int dcol = col_max - col_min + 1;
|
|
|
|
|
|
|
|
// normalize pattern and found quad indices
|
|
|
|
if ((w > h && dcol < drow) ||
|
|
|
|
(w < h && drow < dcol))
|
|
|
|
{
|
|
|
|
h = pattern_size.width - 1;
|
|
|
|
w = pattern_size.height - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
PRINTF("Size: %dx%d Pattern: %dx%d\n", dcol, drow, w, h);
|
|
|
|
|
|
|
|
// check if there are enough inner quads
|
|
|
|
if (dcol < w || drow < h) // found enough inner quads?
|
|
|
|
{
|
|
|
|
PRINTF("Too few inner quad rows/cols\n");
|
|
|
|
return 0; // no, return
|
|
|
|
}
|
|
|
|
#ifdef ENABLE_TRIM_COL_ROW
|
|
|
|
// too many columns, not very common
|
|
|
|
if (dcol == w+1) // too many, trim
|
|
|
|
{
|
|
|
|
PRINTF("Trimming cols\n");
|
|
|
|
if (col_hist[col_max] > col_hist[col_min])
|
|
|
|
{
|
|
|
|
PRINTF("Trimming left col\n");
|
|
|
|
quad_count = icvTrimCol(quads,quad_count,col_min,-1);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
PRINTF("Trimming right col\n");
|
|
|
|
quad_count = icvTrimCol(quads,quad_count,col_max,+1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// too many rows, not very common
|
|
|
|
if (drow == h+1) // too many, trim
|
|
|
|
{
|
|
|
|
PRINTF("Trimming rows\n");
|
|
|
|
if (row_hist[row_max] > row_hist[row_min])
|
|
|
|
{
|
|
|
|
PRINTF("Trimming top row\n");
|
|
|
|
quad_count = icvTrimRow(quads,quad_count,row_min,-1);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
PRINTF("Trimming bottom row\n");
|
|
|
|
quad_count = icvTrimRow(quads,quad_count,row_max,+1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// check edges of inner quads
|
|
|
|
// if there is an outer quad missing, fill it in
|
|
|
|
// first order all inner quads
|
|
|
|
int found = 0;
|
|
|
|
for (int i=0; i<quad_count; i++)
|
|
|
|
{
|
|
|
|
if (quads[i]->count == 4)
|
|
|
|
{ // ok, look at neighbors
|
|
|
|
int col = quads[i]->col;
|
|
|
|
int row = quads[i]->row;
|
|
|
|
for (int j=0; j<4; j++)
|
|
|
|
{
|
|
|
|
switch(j) // adjust col, row for this quad
|
|
|
|
{ // start at top left, go clockwise
|
|
|
|
case 0:
|
|
|
|
row--; col--; break;
|
|
|
|
case 1:
|
|
|
|
col += 2; break;
|
|
|
|
case 2:
|
|
|
|
row += 2; break;
|
|
|
|
case 3:
|
|
|
|
col -= 2; break;
|
|
|
|
}
|
|
|
|
CvCBQuad *neighbor = quads[i]->neighbors[j];
|
|
|
|
if (neighbor && !neighbor->ordered && // is it an inner quad?
|
|
|
|
col <= col_max && col >= col_min &&
|
|
|
|
row <= row_max && row >= row_min)
|
|
|
|
{
|
|
|
|
// if so, set in order
|
|
|
|
PRINTF("Adding inner: col: %d row: %d\n", col, row);
|
|
|
|
found++;
|
|
|
|
icvOrderQuad(neighbor, quads[i]->corners[j], (j+2)%4);
|
|
|
|
neighbor->ordered = true;
|
|
|
|
neighbor->row = row;
|
|
|
|
neighbor->col = col;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// if we have found inner quads, add corresponding outer quads,
|
|
|
|
// which are missing
|
|
|
|
if (found > 0)
|
|
|
|
{
|
|
|
|
PRINTF("Found %d inner quads not connected to outer quads, repairing\n", found);
|
|
|
|
for (int i=0; i<quad_count && *all_count < max_quad_buf_size; i++)
|
|
|
|
{
|
|
|
|
if (quads[i]->count < 4 && quads[i]->ordered)
|
|
|
|
{
|
|
|
|
int added = icvAddOuterQuad(quads[i],quads,quad_count,all_quads,*all_count,corners, max_quad_buf_size);
|
|
|
|
*all_count += added;
|
|
|
|
quad_count += added;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (*all_count >= max_quad_buf_size)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// final trimming of outer quads
|
|
|
|
if (dcol == w && drow == h) // found correct inner quads
|
|
|
|
{
|
|
|
|
PRINTF("Inner bounds ok, check outer quads\n");
|
|
|
|
int rcount = quad_count;
|
|
|
|
for (int i=quad_count-1; i>=0; i--) // eliminate any quad not connected to
|
|
|
|
// an ordered quad
|
|
|
|
{
|
|
|
|
if (quads[i]->ordered == false)
|
|
|
|
{
|
|
|
|
bool outer = false;
|
|
|
|
for (int j=0; j<4; j++) // any neighbors that are ordered?
|
|
|
|
{
|
|
|
|
if (quads[i]->neighbors[j] && quads[i]->neighbors[j]->ordered)
|
|
|
|
outer = true;
|
|
|
|
}
|
|
|
|
if (!outer) // not an outer quad, eliminate
|
|
|
|
{
|
|
|
|
PRINTF("Removing quad %d\n", i);
|
|
|
|
icvRemoveQuadFromGroup(quads,rcount,quads[i]);
|
|
|
|
rcount--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
return rcount;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// add an outer quad
|
|
|
|
// looks for the neighbor of <quad> that isn't present,
|
|
|
|
// tries to add it in.
|
|
|
|
// <quad> is ordered
|
|
|
|
|
|
|
|
static int
|
|
|
|
icvAddOuterQuad( CvCBQuad *quad, CvCBQuad **quads, int quad_count,
|
|
|
|
CvCBQuad **all_quads, int all_count, CvCBCorner **corners, int max_quad_buf_size )
|
|
|
|
|
|
|
|
{
|
|
|
|
int added = 0;
|
|
|
|
for (int i=0; i<4 && all_count < max_quad_buf_size; i++) // find no-neighbor corners
|
|
|
|
{
|
|
|
|
if (!quad->neighbors[i]) // ok, create and add neighbor
|
|
|
|
{
|
|
|
|
int j = (i+2)%4;
|
|
|
|
PRINTF("Adding quad as neighbor 2\n");
|
|
|
|
CvCBQuad *q = &(*all_quads)[all_count];
|
|
|
|
memset( q, 0, sizeof(*q) );
|
|
|
|
added++;
|
|
|
|
quads[quad_count] = q;
|
|
|
|
quad_count++;
|
|
|
|
|
|
|
|
// set neighbor and group id
|
|
|
|
quad->neighbors[i] = q;
|
|
|
|
quad->count += 1;
|
|
|
|
q->neighbors[j] = quad;
|
|
|
|
q->group_idx = quad->group_idx;
|
|
|
|
q->count = 1; // number of neighbors
|
|
|
|
q->ordered = false;
|
|
|
|
q->edge_len = quad->edge_len;
|
|
|
|
|
|
|
|
// make corners of new quad
|
|
|
|
// same as neighbor quad, but offset
|
|
|
|
CvPoint2D32f pt = quad->corners[i]->pt;
|
|
|
|
CvCBCorner* corner;
|
|
|
|
float dx = pt.x - quad->corners[j]->pt.x;
|
|
|
|
float dy = pt.y - quad->corners[j]->pt.y;
|
|
|
|
for (int k=0; k<4; k++)
|
|
|
|
{
|
|
|
|
corner = &(*corners)[all_count*4+k];
|
|
|
|
pt = quad->corners[k]->pt;
|
|
|
|
memset( corner, 0, sizeof(*corner) );
|
|
|
|
corner->pt = pt;
|
|
|
|
q->corners[k] = corner;
|
|
|
|
corner->pt.x += dx;
|
|
|
|
corner->pt.y += dy;
|
|
|
|
}
|
|
|
|
// have to set exact corner
|
|
|
|
q->corners[j] = quad->corners[i];
|
|
|
|
|
|
|
|
// now find other neighbor and add it, if possible
|
|
|
|
if (quad->neighbors[(i+3)%4] &&
|
|
|
|
quad->neighbors[(i+3)%4]->ordered &&
|
|
|
|
quad->neighbors[(i+3)%4]->neighbors[i] &&
|
|
|
|
quad->neighbors[(i+3)%4]->neighbors[i]->ordered )
|
|
|
|
{
|
|
|
|
CvCBQuad *qn = quad->neighbors[(i+3)%4]->neighbors[i];
|
|
|
|
q->count = 2;
|
|
|
|
q->neighbors[(j+1)%4] = qn;
|
|
|
|
qn->neighbors[(i+1)%4] = q;
|
|
|
|
qn->count += 1;
|
|
|
|
// have to set exact corner
|
|
|
|
q->corners[(j+1)%4] = qn->corners[(i+1)%4];
|
|
|
|
}
|
|
|
|
|
|
|
|
all_count++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return added;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// trimming routines
|
|
|
|
#ifdef ENABLE_TRIM_COL_ROW
|
|
|
|
static int
|
|
|
|
icvTrimCol(CvCBQuad **quads, int count, int col, int dir)
|
|
|
|
{
|
|
|
|
int rcount = count;
|
|
|
|
// find the right quad(s)
|
|
|
|
for (int i=0; i<count; i++)
|
|
|
|
{
|
|
|
|
#ifdef DEBUG_CHESSBOARD
|
|
|
|
if (quads[i]->ordered)
|
|
|
|
PRINTF("index: %d cur: %d\n", col, quads[i]->col);
|
|
|
|
#endif
|
|
|
|
if (quads[i]->ordered && quads[i]->col == col)
|
|
|
|
{
|
|
|
|
if (dir == 1)
|
|
|
|
{
|
|
|
|
if (quads[i]->neighbors[1])
|
|
|
|
{
|
|
|
|
icvRemoveQuadFromGroup(quads,rcount,quads[i]->neighbors[1]);
|
|
|
|
rcount--;
|
|
|
|
}
|
|
|
|
if (quads[i]->neighbors[2])
|
|
|
|
{
|
|
|
|
icvRemoveQuadFromGroup(quads,rcount,quads[i]->neighbors[2]);
|
|
|
|
rcount--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (quads[i]->neighbors[0])
|
|
|
|
{
|
|
|
|
icvRemoveQuadFromGroup(quads,rcount,quads[i]->neighbors[0]);
|
|
|
|
rcount--;
|
|
|
|
}
|
|
|
|
if (quads[i]->neighbors[3])
|
|
|
|
{
|
|
|
|
icvRemoveQuadFromGroup(quads,rcount,quads[i]->neighbors[3]);
|
|
|
|
rcount--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return rcount;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
icvTrimRow(CvCBQuad **quads, int count, int row, int dir)
|
|
|
|
{
|
|
|
|
int i, rcount = count;
|
|
|
|
// find the right quad(s)
|
|
|
|
for (i=0; i<count; i++)
|
|
|
|
{
|
|
|
|
#ifdef DEBUG_CHESSBOARD
|
|
|
|
if (quads[i]->ordered)
|
|
|
|
PRINTF("index: %d cur: %d\n", row, quads[i]->row);
|
|
|
|
#endif
|
|
|
|
if (quads[i]->ordered && quads[i]->row == row)
|
|
|
|
{
|
|
|
|
if (dir == 1) // remove from bottom
|
|
|
|
{
|
|
|
|
if (quads[i]->neighbors[2])
|
|
|
|
{
|
|
|
|
icvRemoveQuadFromGroup(quads,rcount,quads[i]->neighbors[2]);
|
|
|
|
rcount--;
|
|
|
|
}
|
|
|
|
if (quads[i]->neighbors[3])
|
|
|
|
{
|
|
|
|
icvRemoveQuadFromGroup(quads,rcount,quads[i]->neighbors[3]);
|
|
|
|
rcount--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else // remove from top
|
|
|
|
{
|
|
|
|
if (quads[i]->neighbors[0])
|
|
|
|
{
|
|
|
|
icvRemoveQuadFromGroup(quads,rcount,quads[i]->neighbors[0]);
|
|
|
|
rcount--;
|
|
|
|
}
|
|
|
|
if (quads[i]->neighbors[1])
|
|
|
|
{
|
|
|
|
icvRemoveQuadFromGroup(quads,rcount,quads[i]->neighbors[1]);
|
|
|
|
rcount--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return rcount;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// remove quad from quad group
|
|
|
|
//
|
|
|
|
|
|
|
|
static void
|
|
|
|
icvRemoveQuadFromGroup(CvCBQuad **quads, int count, CvCBQuad *q0)
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
// remove any references to this quad as a neighbor
|
|
|
|
for(i = 0; i < count; i++ )
|
|
|
|
{
|
|
|
|
CvCBQuad *q = quads[i];
|
|
|
|
for(j = 0; j < 4; j++ )
|
|
|
|
{
|
|
|
|
if( q->neighbors[j] == q0 )
|
|
|
|
{
|
|
|
|
q->neighbors[j] = 0;
|
|
|
|
q->count--;
|
|
|
|
for(int k = 0; k < 4; k++ )
|
|
|
|
if( q0->neighbors[k] == q )
|
|
|
|
{
|
|
|
|
q0->neighbors[k] = 0;
|
|
|
|
q0->count--;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// remove the quad
|
|
|
|
for(i = 0; i < count; i++ )
|
|
|
|
{
|
|
|
|
CvCBQuad *q = quads[i];
|
|
|
|
if (q == q0)
|
|
|
|
{
|
|
|
|
quads[i] = quads[count-1];
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// put quad into correct order, where <corner> has value <common>
|
|
|
|
//
|
|
|
|
|
|
|
|
static void
|
|
|
|
icvOrderQuad(CvCBQuad *quad, CvCBCorner *corner, int common)
|
|
|
|
{
|
|
|
|
// find the corner
|
|
|
|
int tc;
|
|
|
|
for (tc=0; tc<4; tc++)
|
|
|
|
if (quad->corners[tc]->pt.x == corner->pt.x &&
|
|
|
|
quad->corners[tc]->pt.y == corner->pt.y)
|
|
|
|
break;
|
|
|
|
|
|
|
|
// set corner order
|
|
|
|
// shift
|
|
|
|
while (tc != common)
|
|
|
|
{
|
|
|
|
// shift by one
|
|
|
|
CvCBCorner *tempc;
|
|
|
|
CvCBQuad *tempq;
|
|
|
|
tempc = quad->corners[3];
|
|
|
|
tempq = quad->neighbors[3];
|
|
|
|
for (int i=3; i>0; i--)
|
|
|
|
{
|
|
|
|
quad->corners[i] = quad->corners[i-1];
|
|
|
|
quad->neighbors[i] = quad->neighbors[i-1];
|
|
|
|
}
|
|
|
|
quad->corners[0] = tempc;
|
|
|
|
quad->neighbors[0] = tempq;
|
|
|
|
tc++;
|
|
|
|
tc = tc%4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// if we found too many connect quads, remove those which probably do not belong.
|
|
|
|
static int
|
|
|
|
icvCleanFoundConnectedQuads( int quad_count, CvCBQuad **quad_group, CvSize pattern_size )
|
|
|
|
{
|
|
|
|
CvPoint2D32f center;
|
|
|
|
int i, j, k;
|
|
|
|
// number of quads this pattern should contain
|
|
|
|
int count = ((pattern_size.width + 1)*(pattern_size.height + 1) + 1)/2;
|
|
|
|
|
|
|
|
// if we have more quadrangles than we should,
|
|
|
|
// try to eliminate duplicates or ones which don't belong to the pattern rectangle...
|
|
|
|
if( quad_count <= count )
|
|
|
|
return quad_count;
|
|
|
|
|
|
|
|
// create an array of quadrangle centers
|
|
|
|
cv::AutoBuffer<CvPoint2D32f> centers( quad_count );
|
|
|
|
cv::Ptr<CvMemStorage> temp_storage(cvCreateMemStorage(0));
|
|
|
|
|
|
|
|
for( i = 0; i < quad_count; i++ )
|
|
|
|
{
|
|
|
|
CvPoint2D32f ci;
|
|
|
|
CvCBQuad* q = quad_group[i];
|
|
|
|
|
|
|
|
for( j = 0; j < 4; j++ )
|
|
|
|
{
|
|
|
|
CvPoint2D32f pt = q->corners[j]->pt;
|
|
|
|
ci.x += pt.x;
|
|
|
|
ci.y += pt.y;
|
|
|
|
}
|
|
|
|
|
|
|
|
ci.x *= 0.25f;
|
|
|
|
ci.y *= 0.25f;
|
|
|
|
|
|
|
|
centers[i] = ci;
|
|
|
|
center.x += ci.x;
|
|
|
|
center.y += ci.y;
|
|
|
|
}
|
|
|
|
center.x /= quad_count;
|
|
|
|
center.y /= quad_count;
|
|
|
|
|
|
|
|
// If we still have more quadrangles than we should,
|
|
|
|
// we try to eliminate bad ones based on minimizing the bounding box.
|
|
|
|
// We iteratively remove the point which reduces the size of
|
|
|
|
// the bounding box of the blobs the most
|
|
|
|
// (since we want the rectangle to be as small as possible)
|
|
|
|
// remove the quadrange that causes the biggest reduction
|
|
|
|
// in pattern size until we have the correct number
|
|
|
|
for( ; quad_count > count; quad_count-- )
|
|
|
|
{
|
|
|
|
double min_box_area = DBL_MAX;
|
|
|
|
int skip, min_box_area_index = -1;
|
|
|
|
|
|
|
|
// For each point, calculate box area without that point
|
|
|
|
for( skip = 0; skip < quad_count; skip++ )
|
|
|
|
{
|
|
|
|
// get bounding rectangle
|
|
|
|
CvPoint2D32f temp = centers[skip]; // temporarily make index 'skip' the same as
|
|
|
|
centers[skip] = center; // pattern center (so it is not counted for convex hull)
|
|
|
|
CvMat pointMat = cvMat(1, quad_count, CV_32FC2, centers);
|
|
|
|
CvSeq *hull = cvConvexHull2( &pointMat, temp_storage, CV_CLOCKWISE, 1 );
|
|
|
|
centers[skip] = temp;
|
|
|
|
double hull_area = fabs(cvContourArea(hull, CV_WHOLE_SEQ));
|
|
|
|
|
|
|
|
// remember smallest box area
|
|
|
|
if( hull_area < min_box_area )
|
|
|
|
{
|
|
|
|
min_box_area = hull_area;
|
|
|
|
min_box_area_index = skip;
|
|
|
|
}
|
|
|
|
cvClearMemStorage( temp_storage );
|
|
|
|
}
|
|
|
|
|
|
|
|
CvCBQuad *q0 = quad_group[min_box_area_index];
|
|
|
|
|
|
|
|
// remove any references to this quad as a neighbor
|
|
|
|
for( i = 0; i < quad_count; i++ )
|
|
|
|
{
|
|
|
|
CvCBQuad *q = quad_group[i];
|
|
|
|
for( j = 0; j < 4; j++ )
|
|
|
|
{
|
|
|
|
if( q->neighbors[j] == q0 )
|
|
|
|
{
|
|
|
|
q->neighbors[j] = 0;
|
|
|
|
q->count--;
|
|
|
|
for( k = 0; k < 4; k++ )
|
|
|
|
if( q0->neighbors[k] == q )
|
|
|
|
{
|
|
|
|
q0->neighbors[k] = 0;
|
|
|
|
q0->count--;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// remove the quad
|
|
|
|
quad_count--;
|
|
|
|
quad_group[min_box_area_index] = quad_group[quad_count];
|
|
|
|
centers[min_box_area_index] = centers[quad_count];
|
|
|
|
}
|
|
|
|
|
|
|
|
return quad_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
//=====================================================================================
|
|
|
|
|
|
|
|
static int
|
|
|
|
icvFindConnectedQuads( CvCBQuad *quad, int quad_count, CvCBQuad **out_group,
|
|
|
|
int group_idx, CvMemStorage* storage )
|
|
|
|
{
|
|
|
|
cv::Ptr<CvMemStorage> temp_storage(cvCreateChildMemStorage( storage ));
|
|
|
|
CvSeq* stack = cvCreateSeq( 0, sizeof(*stack), sizeof(void*), temp_storage );
|
|
|
|
int i, count = 0;
|
|
|
|
|
|
|
|
// Scan the array for a first unlabeled quad
|
|
|
|
for( i = 0; i < quad_count; i++ )
|
|
|
|
{
|
|
|
|
if( quad[i].count > 0 && quad[i].group_idx < 0)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Recursively find a group of connected quads starting from the seed quad[i]
|
|
|
|
if( i < quad_count )
|
|
|
|
{
|
|
|
|
CvCBQuad* q = &quad[i];
|
|
|
|
cvSeqPush( stack, &q );
|
|
|
|
out_group[count++] = q;
|
|
|
|
q->group_idx = group_idx;
|
|
|
|
q->ordered = false;
|
|
|
|
|
|
|
|
while( stack->total )
|
|
|
|
{
|
|
|
|
cvSeqPop( stack, &q );
|
|
|
|
for( i = 0; i < 4; i++ )
|
|
|
|
{
|
|
|
|
CvCBQuad *neighbor = q->neighbors[i];
|
|
|
|
if( neighbor && neighbor->count > 0 && neighbor->group_idx < 0 )
|
|
|
|
{
|
|
|
|
cvSeqPush( stack, &neighbor );
|
|
|
|
out_group[count++] = neighbor;
|
|
|
|
neighbor->group_idx = group_idx;
|
|
|
|
neighbor->ordered = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//=====================================================================================
|
|
|
|
|
|
|
|
static int
|
|
|
|
icvCheckQuadGroup( CvCBQuad **quad_group, int quad_count,
|
|
|
|
CvCBCorner **out_corners, CvSize pattern_size )
|
|
|
|
{
|
|
|
|
const int ROW1 = 1000000;
|
|
|
|
const int ROW2 = 2000000;
|
|
|
|
const int ROW_ = 3000000;
|
|
|
|
int result = 0;
|
|
|
|
int i, out_corner_count = 0, corner_count = 0;
|
|
|
|
std::vector<CvCBCorner*> corners(quad_count*4);
|
|
|
|
|
|
|
|
int j, k, kk;
|
|
|
|
int width = 0, height = 0;
|
|
|
|
int hist[5] = {0,0,0,0,0};
|
|
|
|
CvCBCorner* first = 0, *first2 = 0, *right, *cur, *below, *c;
|
|
|
|
|
|
|
|
// build dual graph, which vertices are internal quad corners
|
|
|
|
// and two vertices are connected iff they lie on the same quad edge
|
|
|
|
for( i = 0; i < quad_count; i++ )
|
|
|
|
{
|
|
|
|
CvCBQuad* q = quad_group[i];
|
|
|
|
/*CvScalar color = q->count == 0 ? cvScalar(0,255,255) :
|
|
|
|
q->count == 1 ? cvScalar(0,0,255) :
|
|
|
|
q->count == 2 ? cvScalar(0,255,0) :
|
|
|
|
q->count == 3 ? cvScalar(255,255,0) :
|
|
|
|
cvScalar(255,0,0);*/
|
|
|
|
|
|
|
|
for( j = 0; j < 4; j++ )
|
|
|
|
{
|
|
|
|
//cvLine( debug_img, cvPointFrom32f(q->corners[j]->pt), cvPointFrom32f(q->corners[(j+1)&3]->pt), color, 1, CV_AA, 0 );
|
|
|
|
if( q->neighbors[j] )
|
|
|
|
{
|
|
|
|
CvCBCorner *a = q->corners[j], *b = q->corners[(j+1)&3];
|
|
|
|
// mark internal corners that belong to:
|
|
|
|
// - a quad with a single neighbor - with ROW1,
|
|
|
|
// - a quad with two neighbors - with ROW2
|
|
|
|
// make the rest of internal corners with ROW_
|
|
|
|
int row_flag = q->count == 1 ? ROW1 : q->count == 2 ? ROW2 : ROW_;
|
|
|
|
|
|
|
|
if( a->row == 0 )
|
|
|
|
{
|
|
|
|
corners[corner_count++] = a;
|
|
|
|
a->row = row_flag;
|
|
|
|
}
|
|
|
|
else if( a->row > row_flag )
|
|
|
|
a->row = row_flag;
|
|
|
|
|
|
|
|
if( q->neighbors[(j+1)&3] )
|
|
|
|
{
|
|
|
|
if( a->count >= 4 || b->count >= 4 )
|
|
|
|
goto finalize;
|
|
|
|
for( k = 0; k < 4; k++ )
|
|
|
|
{
|
|
|
|
if( a->neighbors[k] == b )
|
|
|
|
goto finalize;
|
|
|
|
if( b->neighbors[k] == a )
|
|
|
|
goto finalize;
|
|
|
|
}
|
|
|
|
a->neighbors[a->count++] = b;
|
|
|
|
b->neighbors[b->count++] = a;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( corner_count != pattern_size.width*pattern_size.height )
|
|
|
|
goto finalize;
|
|
|
|
|
|
|
|
for( i = 0; i < corner_count; i++ )
|
|
|
|
{
|
|
|
|
int n = corners[i]->count;
|
|
|
|
assert( 0 <= n && n <= 4 );
|
|
|
|
hist[n]++;
|
|
|
|
if( !first && n == 2 )
|
|
|
|
{
|
|
|
|
if( corners[i]->row == ROW1 )
|
|
|
|
first = corners[i];
|
|
|
|
else if( !first2 && corners[i]->row == ROW2 )
|
|
|
|
first2 = corners[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// start with a corner that belongs to a quad with a signle neighbor.
|
|
|
|
// if we do not have such, start with a corner of a quad with two neighbors.
|
|
|
|
if( !first )
|
|
|
|
first = first2;
|
|
|
|
|
|
|
|
if( !first || hist[0] != 0 || hist[1] != 0 || hist[2] != 4 ||
|
|
|
|
hist[3] != (pattern_size.width + pattern_size.height)*2 - 8 )
|
|
|
|
goto finalize;
|
|
|
|
|
|
|
|
cur = first;
|
|
|
|
right = below = 0;
|
|
|
|
out_corners[out_corner_count++] = cur;
|
|
|
|
|
|
|
|
for( k = 0; k < 4; k++ )
|
|
|
|
{
|
|
|
|
c = cur->neighbors[k];
|
|
|
|
if( c )
|
|
|
|
{
|
|
|
|
if( !right )
|
|
|
|
right = c;
|
|
|
|
else if( !below )
|
|
|
|
below = c;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( !right || (right->count != 2 && right->count != 3) ||
|
|
|
|
!below || (below->count != 2 && below->count != 3) )
|
|
|
|
goto finalize;
|
|
|
|
|
|
|
|
cur->row = 0;
|
|
|
|
//cvCircle( debug_img, cvPointFrom32f(cur->pt), 3, cvScalar(0,255,0), -1, 8, 0 );
|
|
|
|
|
|
|
|
first = below; // remember the first corner in the next row
|
|
|
|
// find and store the first row (or column)
|
|
|
|
for(j=1;;j++)
|
|
|
|
{
|
|
|
|
right->row = 0;
|
|
|
|
out_corners[out_corner_count++] = right;
|
|
|
|
//cvCircle( debug_img, cvPointFrom32f(right->pt), 3, cvScalar(0,255-j*10,0), -1, 8, 0 );
|
|
|
|
if( right->count == 2 )
|
|
|
|
break;
|
|
|
|
if( right->count != 3 || out_corner_count >= MAX(pattern_size.width,pattern_size.height) )
|
|
|
|
goto finalize;
|
|
|
|
cur = right;
|
|
|
|
for( k = 0; k < 4; k++ )
|
|
|
|
{
|
|
|
|
c = cur->neighbors[k];
|
|
|
|
if( c && c->row > 0 )
|
|
|
|
{
|
|
|
|
for( kk = 0; kk < 4; kk++ )
|
|
|
|
{
|
|
|
|
if( c->neighbors[kk] == below )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if( kk < 4 )
|
|
|
|
below = c;
|
|
|
|
else
|
|
|
|
right = c;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
width = out_corner_count;
|
|
|
|
if( width == pattern_size.width )
|
|
|
|
height = pattern_size.height;
|
|
|
|
else if( width == pattern_size.height )
|
|
|
|
height = pattern_size.width;
|
|
|
|
else
|
|
|
|
goto finalize;
|
|
|
|
|
|
|
|
// find and store all the other rows
|
|
|
|
for( i = 1; ; i++ )
|
|
|
|
{
|
|
|
|
if( !first )
|
|
|
|
break;
|
|
|
|
cur = first;
|
|
|
|
first = 0;
|
|
|
|
for( j = 0;; j++ )
|
|
|
|
{
|
|
|
|
cur->row = i;
|
|
|
|
out_corners[out_corner_count++] = cur;
|
|
|
|
//cvCircle( debug_img, cvPointFrom32f(cur->pt), 3, cvScalar(0,0,255-j*10), -1, 8, 0 );
|
|
|
|
if( cur->count == 2 + (i < height-1) && j > 0 )
|
|
|
|
break;
|
|
|
|
|
|
|
|
right = 0;
|
|
|
|
|
|
|
|
// find a neighbor that has not been processed yet
|
|
|
|
// and that has a neighbor from the previous row
|
|
|
|
for( k = 0; k < 4; k++ )
|
|
|
|
{
|
|
|
|
c = cur->neighbors[k];
|
|
|
|
if( c && c->row > i )
|
|
|
|
{
|
|
|
|
for( kk = 0; kk < 4; kk++ )
|
|
|
|
{
|
|
|
|
if( c->neighbors[kk] && c->neighbors[kk]->row == i-1 )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if( kk < 4 )
|
|
|
|
{
|
|
|
|
right = c;
|
|
|
|
if( j > 0 )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
else if( j == 0 )
|
|
|
|
first = c;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( !right )
|
|
|
|
goto finalize;
|
|
|
|
cur = right;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( j != width - 1 )
|
|
|
|
goto finalize;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( out_corner_count != corner_count )
|
|
|
|
goto finalize;
|
|
|
|
|
|
|
|
// check if we need to transpose the board
|
|
|
|
if( width != pattern_size.width )
|
|
|
|
{
|
|
|
|
CV_SWAP( width, height, k );
|
|
|
|
|
|
|
|
memcpy( &corners[0], out_corners, corner_count*sizeof(corners[0]) );
|
|
|
|
for( i = 0; i < height; i++ )
|
|
|
|
for( j = 0; j < width; j++ )
|
|
|
|
out_corners[i*width + j] = corners[j*height + i];
|
|
|
|
}
|
|
|
|
|
|
|
|
// check if we need to revert the order in each row
|
|
|
|
{
|
|
|
|
CvPoint2D32f p0 = out_corners[0]->pt, p1 = out_corners[pattern_size.width-1]->pt,
|
|
|
|
p2 = out_corners[pattern_size.width]->pt;
|
|
|
|
if( (p1.x - p0.x)*(p2.y - p1.y) - (p1.y - p0.y)*(p2.x - p1.x) < 0 )
|
|
|
|
{
|
|
|
|
if( width % 2 == 0 )
|
|
|
|
{
|
|
|
|
for( i = 0; i < height; i++ )
|
|
|
|
for( j = 0; j < width/2; j++ )
|
|
|
|
CV_SWAP( out_corners[i*width+j], out_corners[i*width+width-j-1], c );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
for( j = 0; j < width; j++ )
|
|
|
|
for( i = 0; i < height/2; i++ )
|
|
|
|
CV_SWAP( out_corners[i*width+j], out_corners[(height - i - 1)*width+j], c );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
result = corner_count;
|
|
|
|
|
|
|
|
finalize:
|
|
|
|
|
|
|
|
if( result <= 0 )
|
|
|
|
{
|
|
|
|
corner_count = MIN( corner_count, pattern_size.width*pattern_size.height );
|
|
|
|
for( i = 0; i < corner_count; i++ )
|
|
|
|
out_corners[i] = corners[i];
|
|
|
|
result = -corner_count;
|
|
|
|
|
|
|
|
if (result == -pattern_size.width*pattern_size.height)
|
|
|
|
result = -result;
|
|
|
|
}
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//=====================================================================================
|
|
|
|
|
|
|
|
static void icvFindQuadNeighbors( CvCBQuad *quads, int quad_count )
|
|
|
|
{
|
|
|
|
const float thresh_scale = 1.f;
|
|
|
|
int idx, i, k, j;
|
|
|
|
float dx, dy, dist;
|
|
|
|
|
|
|
|
// find quad neighbors
|
|
|
|
for( idx = 0; idx < quad_count; idx++ )
|
|
|
|
{
|
|
|
|
CvCBQuad* cur_quad = &quads[idx];
|
|
|
|
|
|
|
|
// choose the points of the current quadrangle that are close to
|
|
|
|
// some points of the other quadrangles
|
|
|
|
// (it can happen for split corners (due to dilation) of the
|
|
|
|
// checker board). Search only in other quadrangles!
|
|
|
|
|
|
|
|
// for each corner of this quadrangle
|
|
|
|
for( i = 0; i < 4; i++ )
|
|
|
|
{
|
|
|
|
CvPoint2D32f pt;
|
|
|
|
float min_dist = FLT_MAX;
|
|
|
|
int closest_corner_idx = -1;
|
|
|
|
CvCBQuad *closest_quad = 0;
|
|
|
|
CvCBCorner *closest_corner = 0;
|
|
|
|
|
|
|
|
if( cur_quad->neighbors[i] )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
pt = cur_quad->corners[i]->pt;
|
|
|
|
|
|
|
|
// find the closest corner in all other quadrangles
|
|
|
|
for( k = 0; k < quad_count; k++ )
|
|
|
|
{
|
|
|
|
if( k == idx )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
for( j = 0; j < 4; j++ )
|
|
|
|
{
|
|
|
|
if( quads[k].neighbors[j] )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
dx = pt.x - quads[k].corners[j]->pt.x;
|
|
|
|
dy = pt.y - quads[k].corners[j]->pt.y;
|
|
|
|
dist = dx * dx + dy * dy;
|
|
|
|
|
|
|
|
if( dist < min_dist &&
|
|
|
|
dist <= cur_quad->edge_len*thresh_scale &&
|
|
|
|
dist <= quads[k].edge_len*thresh_scale )
|
|
|
|
{
|
|
|
|
// check edge lengths, make sure they're compatible
|
|
|
|
// edges that are different by more than 1:4 are rejected
|
|
|
|
float ediff = cur_quad->edge_len - quads[k].edge_len;
|
|
|
|
if (ediff > 32*cur_quad->edge_len ||
|
|
|
|
ediff > 32*quads[k].edge_len)
|
|
|
|
{
|
|
|
|
PRINTF("Incompatible edge lengths\n");
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
closest_corner_idx = j;
|
|
|
|
closest_quad = &quads[k];
|
|
|
|
min_dist = dist;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// we found a matching corner point?
|
|
|
|
if( closest_corner_idx >= 0 && min_dist < FLT_MAX )
|
|
|
|
{
|
|
|
|
// If another point from our current quad is closer to the found corner
|
|
|
|
// than the current one, then we don't count this one after all.
|
|
|
|
// This is necessary to support small squares where otherwise the wrong
|
|
|
|
// corner will get matched to closest_quad;
|
|
|
|
closest_corner = closest_quad->corners[closest_corner_idx];
|
|
|
|
|
|
|
|
for( j = 0; j < 4; j++ )
|
|
|
|
{
|
|
|
|
if( cur_quad->neighbors[j] == closest_quad )
|
|
|
|
break;
|
|
|
|
|
|
|
|
dx = closest_corner->pt.x - cur_quad->corners[j]->pt.x;
|
|
|
|
dy = closest_corner->pt.y - cur_quad->corners[j]->pt.y;
|
|
|
|
|
|
|
|
if( dx * dx + dy * dy < min_dist )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( j < 4 || cur_quad->count >= 4 || closest_quad->count >= 4 )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Check that each corner is a neighbor of different quads
|
|
|
|
for( j = 0; j < closest_quad->count; j++ )
|
|
|
|
{
|
|
|
|
if( closest_quad->neighbors[j] == cur_quad )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if( j < closest_quad->count )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// check whether the closest corner to closest_corner
|
|
|
|
// is different from cur_quad->corners[i]->pt
|
|
|
|
for( k = 0; k < quad_count; k++ )
|
|
|
|
{
|
|
|
|
CvCBQuad* q = &quads[k];
|
|
|
|
if( k == idx || q == closest_quad )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
for( j = 0; j < 4; j++ )
|
|
|
|
if( !q->neighbors[j] )
|
|
|
|
{
|
|
|
|
dx = closest_corner->pt.x - q->corners[j]->pt.x;
|
|
|
|
dy = closest_corner->pt.y - q->corners[j]->pt.y;
|
|
|
|
dist = dx*dx + dy*dy;
|
|
|
|
if( dist < min_dist )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if( j < 4 )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( k < quad_count )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
closest_corner->pt.x = (pt.x + closest_corner->pt.x) * 0.5f;
|
|
|
|
closest_corner->pt.y = (pt.y + closest_corner->pt.y) * 0.5f;
|
|
|
|
|
|
|
|
// We've found one more corner - remember it
|
|
|
|
cur_quad->count++;
|
|
|
|
cur_quad->neighbors[i] = closest_quad;
|
|
|
|
cur_quad->corners[i] = closest_corner;
|
|
|
|
|
|
|
|
closest_quad->count++;
|
|
|
|
closest_quad->neighbors[closest_corner_idx] = cur_quad;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//=====================================================================================
|
|
|
|
|
|
|
|
// returns corners in clockwise order
|
|
|
|
// corners don't necessarily start at same position on quad (e.g.,
|
|
|
|
// top left corner)
|
|
|
|
|
|
|
|
static int
|
|
|
|
icvGenerateQuads( CvCBQuad **out_quads, CvCBCorner **out_corners,
|
|
|
|
CvMemStorage *storage, const cv::Mat & image_, int flags, int *max_quad_buf_size )
|
|
|
|
{
|
|
|
|
CvMat image_old(image_), *image = &image_old;
|
|
|
|
int quad_count = 0;
|
|
|
|
cv::Ptr<CvMemStorage> temp_storage;
|
|
|
|
|
|
|
|
if( out_quads )
|
|
|
|
*out_quads = 0;
|
|
|
|
|
|
|
|
if( out_corners )
|
|
|
|
*out_corners = 0;
|
|
|
|
|
|
|
|
CvSeq *src_contour = 0;
|
|
|
|
CvSeq *root;
|
|
|
|
CvContourEx* board = 0;
|
|
|
|
CvContourScanner scanner;
|
|
|
|
int i, idx, min_size;
|
|
|
|
|
|
|
|
CV_Assert( out_corners && out_quads );
|
|
|
|
|
|
|
|
// empiric bound for minimal allowed perimeter for squares
|
|
|
|
min_size = 25; //cvRound( image->cols * image->rows * .03 * 0.01 * 0.92 );
|
|
|
|
|
|
|
|
// create temporary storage for contours and the sequence of pointers to found quadrangles
|
|
|
|
temp_storage.reset(cvCreateChildMemStorage( storage ));
|
|
|
|
root = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvSeq*), temp_storage );
|
|
|
|
|
|
|
|
// initialize contour retrieving routine
|
|
|
|
scanner = cvStartFindContours( image, temp_storage, sizeof(CvContourEx),
|
|
|
|
CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
|
|
|
|
|
|
|
|
// get all the contours one by one
|
|
|
|
while( (src_contour = cvFindNextContour( scanner )) != 0 )
|
|
|
|
{
|
|
|
|
CvSeq *dst_contour = 0;
|
|
|
|
CvRect rect = ((CvContour*)src_contour)->rect;
|
|
|
|
|
|
|
|
// reject contours with too small perimeter
|
|
|
|
if( CV_IS_SEQ_HOLE(src_contour) && rect.width*rect.height >= min_size )
|
|
|
|
{
|
|
|
|
const int min_approx_level = 1, max_approx_level = MAX_CONTOUR_APPROX;
|
|
|
|
int approx_level;
|
|
|
|
for( approx_level = min_approx_level; approx_level <= max_approx_level; approx_level++ )
|
|
|
|
{
|
|
|
|
dst_contour = cvApproxPoly( src_contour, sizeof(CvContour), temp_storage,
|
|
|
|
CV_POLY_APPROX_DP, (float)approx_level );
|
|
|
|
if( dst_contour->total == 4 )
|
|
|
|
break;
|
|
|
|
|
|
|
|
// we call this again on its own output, because sometimes
|
|
|
|
// cvApproxPoly() does not simplify as much as it should.
|
|
|
|
dst_contour = cvApproxPoly( dst_contour, sizeof(CvContour), temp_storage,
|
|
|
|
CV_POLY_APPROX_DP, (float)approx_level );
|
|
|
|
|
|
|
|
if( dst_contour->total == 4 )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// reject non-quadrangles
|
|
|
|
if( dst_contour->total == 4 && cvCheckContourConvexity(dst_contour) )
|
|
|
|
{
|
|
|
|
CvPoint pt[4];
|
|
|
|
double d1, d2, p = cvContourPerimeter(dst_contour);
|
|
|
|
double area = fabs(cvContourArea(dst_contour, CV_WHOLE_SEQ));
|
|
|
|
double dx, dy;
|
|
|
|
|
|
|
|
for( i = 0; i < 4; i++ )
|
|
|
|
pt[i] = *(CvPoint*)cvGetSeqElem(dst_contour, i);
|
|
|
|
|
|
|
|
dx = pt[0].x - pt[2].x;
|
|
|
|
dy = pt[0].y - pt[2].y;
|
|
|
|
d1 = sqrt(dx*dx + dy*dy);
|
|
|
|
|
|
|
|
dx = pt[1].x - pt[3].x;
|
|
|
|
dy = pt[1].y - pt[3].y;
|
|
|
|
d2 = sqrt(dx*dx + dy*dy);
|
|
|
|
|
|
|
|
// philipg. Only accept those quadrangles which are more square
|
|
|
|
// than rectangular and which are big enough
|
|
|
|
double d3, d4;
|
|
|
|
dx = pt[0].x - pt[1].x;
|
|
|
|
dy = pt[0].y - pt[1].y;
|
|
|
|
d3 = sqrt(dx*dx + dy*dy);
|
|
|
|
dx = pt[1].x - pt[2].x;
|
|
|
|
dy = pt[1].y - pt[2].y;
|
|
|
|
d4 = sqrt(dx*dx + dy*dy);
|
|
|
|
if( !(flags & CV_CALIB_CB_FILTER_QUADS) ||
|
|
|
|
(d3*4 > d4 && d4*4 > d3 && d3*d4 < area*1.5 && area > min_size &&
|
|
|
|
d1 >= 0.15 * p && d2 >= 0.15 * p) )
|
|
|
|
{
|
|
|
|
CvContourEx* parent = (CvContourEx*)(src_contour->v_prev);
|
|
|
|
parent->counter++;
|
|
|
|
if( !board || board->counter < parent->counter )
|
|
|
|
board = parent;
|
|
|
|
dst_contour->v_prev = (CvSeq*)parent;
|
|
|
|
//for( i = 0; i < 4; i++ ) cvLine( debug_img, pt[i], pt[(i+1)&3], cvScalar(200,255,255), 1, CV_AA, 0 );
|
|
|
|
cvSeqPush( root, &dst_contour );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// finish contour retrieving
|
|
|
|
cvEndFindContours( &scanner );
|
|
|
|
|
|
|
|
// allocate quad & corner buffers
|
|
|
|
*max_quad_buf_size = MAX(1, (root->total+root->total / 2)) * 2;
|
|
|
|
*out_quads = (CvCBQuad*)cvAlloc(*max_quad_buf_size * sizeof((*out_quads)[0]));
|
|
|
|
*out_corners = (CvCBCorner*)cvAlloc(*max_quad_buf_size * 4 * sizeof((*out_corners)[0]));
|
|
|
|
|
|
|
|
// Create array of quads structures
|
|
|
|
for( idx = 0; idx < root->total; idx++ )
|
|
|
|
{
|
|
|
|
CvCBQuad* q = &(*out_quads)[quad_count];
|
|
|
|
src_contour = *(CvSeq**)cvGetSeqElem( root, idx );
|
|
|
|
if( (flags & CV_CALIB_CB_FILTER_QUADS) && src_contour->v_prev != (CvSeq*)board )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// reset group ID
|
|
|
|
memset( q, 0, sizeof(*q) );
|
|
|
|
q->group_idx = -1;
|
|
|
|
assert( src_contour->total == 4 );
|
|
|
|
for( i = 0; i < 4; i++ )
|
|
|
|
{
|
|
|
|
CvPoint * onePoint = (CvPoint*)cvGetSeqElem(src_contour, i);
|
|
|
|
CV_Assert(onePoint != NULL);
|
|
|
|
CvPoint2D32f pt = cvPointTo32f(*onePoint);
|
|
|
|
CvCBCorner* corner = &(*out_corners)[quad_count*4 + i];
|
|
|
|
|
|
|
|
memset( corner, 0, sizeof(*corner) );
|
|
|
|
corner->pt = pt;
|
|
|
|
q->corners[i] = corner;
|
|
|
|
}
|
|
|
|
q->edge_len = FLT_MAX;
|
|
|
|
for( i = 0; i < 4; i++ )
|
|
|
|
{
|
|
|
|
float dx = q->corners[i]->pt.x - q->corners[(i+1)&3]->pt.x;
|
|
|
|
float dy = q->corners[i]->pt.y - q->corners[(i+1)&3]->pt.y;
|
|
|
|
float d = dx*dx + dy*dy;
|
|
|
|
if( q->edge_len > d )
|
|
|
|
q->edge_len = d;
|
|
|
|
}
|
|
|
|
quad_count++;
|
|
|
|
}
|
|
|
|
|
|
|
|
return quad_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool processQuads(CvCBQuad *quads, int quad_count, CvSize pattern_size, int max_quad_buf_size,
|
|
|
|
CvMemStorage * storage, CvCBCorner *corners, CvPoint2D32f *out_corners, int *out_corner_count, int & prev_sqr_size)
|
|
|
|
{
|
|
|
|
if( quad_count <= 0 )
|
|
|
|
return false;
|
|
|
|
|
|
|
|
bool found = false;
|
|
|
|
|
|
|
|
// Find quad's neighbors
|
|
|
|
icvFindQuadNeighbors( quads, quad_count );
|
|
|
|
|
|
|
|
// allocate extra for adding in icvOrderFoundQuads
|
|
|
|
CvCBQuad **quad_group = 0;
|
|
|
|
CvCBCorner **corner_group = 0;
|
|
|
|
|
|
|
|
quad_group = (CvCBQuad**)cvAlloc( sizeof(quad_group[0]) * max_quad_buf_size);
|
|
|
|
corner_group = (CvCBCorner**)cvAlloc( sizeof(corner_group[0]) * max_quad_buf_size * 4 );
|
|
|
|
|
|
|
|
for( int group_idx = 0; ; group_idx++ )
|
|
|
|
{
|
|
|
|
int count = icvFindConnectedQuads( quads, quad_count, quad_group, group_idx, storage );
|
|
|
|
|
|
|
|
if( count == 0 )
|
|
|
|
break;
|
|
|
|
|
|
|
|
// order the quad corners globally
|
|
|
|
// maybe delete or add some
|
|
|
|
PRINTF("Starting ordering of inner quads (%d)\n", count);
|
|
|
|
count = icvOrderFoundConnectedQuads(count, quad_group, &quad_count, &quads, &corners,
|
|
|
|
pattern_size, max_quad_buf_size, storage );
|
|
|
|
PRINTF("Finished ordering of inner quads (%d)\n", count);
|
|
|
|
|
|
|
|
if (count == 0)
|
|
|
|
continue; // haven't found inner quads
|
|
|
|
|
|
|
|
// If count is more than it should be, this will remove those quads
|
|
|
|
// which cause maximum deviation from a nice square pattern.
|
|
|
|
count = icvCleanFoundConnectedQuads( count, quad_group, pattern_size );
|
|
|
|
PRINTF("Connected group: %d, count: %d\n", group_idx, count);
|
|
|
|
|
|
|
|
count = icvCheckQuadGroup( quad_group, count, corner_group, pattern_size );
|
|
|
|
PRINTF("Connected group: %d, count: %d\n", group_idx, count);
|
|
|
|
|
|
|
|
int n = count > 0 ? pattern_size.width * pattern_size.height : -count;
|
|
|
|
n = MIN( n, pattern_size.width * pattern_size.height );
|
|
|
|
float sum_dist = 0;
|
|
|
|
int total = 0;
|
|
|
|
|
|
|
|
for(int i = 0; i < n; i++ )
|
|
|
|
{
|
|
|
|
int ni = 0;
|
|
|
|
float avgi = corner_group[i]->meanDist(&ni);
|
|
|
|
sum_dist += avgi*ni;
|
|
|
|
total += ni;
|
|
|
|
}
|
|
|
|
prev_sqr_size = cvRound(sum_dist/MAX(total, 1));
|
|
|
|
|
|
|
|
if( count > 0 || (out_corner_count && -count > *out_corner_count) )
|
|
|
|
{
|
|
|
|
// copy corners to output array
|
|
|
|
for(int i = 0; i < n; i++ )
|
|
|
|
out_corners[i] = corner_group[i]->pt;
|
|
|
|
|
|
|
|
if( out_corner_count )
|
|
|
|
*out_corner_count = n;
|
|
|
|
|
|
|
|
if( count == pattern_size.width*pattern_size.height
|
|
|
|
&& icvCheckBoardMonotony( out_corners, pattern_size ))
|
|
|
|
{
|
|
|
|
found = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cvFree(&quad_group);
|
|
|
|
cvFree(&corner_group);
|
|
|
|
|
|
|
|
return found;
|
|
|
|
}
|
|
|
|
|
|
|
|
//==================================================================================================
|
|
|
|
|
|
|
|
CV_IMPL void
|
|
|
|
cvDrawChessboardCorners( CvArr* _image, CvSize pattern_size,
|
|
|
|
CvPoint2D32f* corners, int count, int found )
|
|
|
|
{
|
|
|
|
const int shift = 0;
|
|
|
|
const int radius = 4;
|
|
|
|
const int r = radius*(1 << shift);
|
|
|
|
int i;
|
|
|
|
CvMat stub, *image;
|
|
|
|
double scale = 1;
|
|
|
|
int type, cn, line_type;
|
|
|
|
|
|
|
|
image = cvGetMat( _image, &stub );
|
|
|
|
|
|
|
|
type = CV_MAT_TYPE(image->type);
|
|
|
|
cn = CV_MAT_CN(type);
|
|
|
|
if( cn != 1 && cn != 3 && cn != 4 )
|
|
|
|
CV_Error( CV_StsUnsupportedFormat, "Number of channels must be 1, 3 or 4" );
|
|
|
|
|
|
|
|
switch( CV_MAT_DEPTH(image->type) )
|
|
|
|
{
|
|
|
|
case CV_8U:
|
|
|
|
scale = 1;
|
|
|
|
break;
|
|
|
|
case CV_16U:
|
|
|
|
scale = 256;
|
|
|
|
break;
|
|
|
|
case CV_32F:
|
|
|
|
scale = 1./255;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
CV_Error( CV_StsUnsupportedFormat,
|
|
|
|
"Only 8-bit, 16-bit or floating-point 32-bit images are supported" );
|
|
|
|
}
|
|
|
|
|
|
|
|
line_type = type == CV_8UC1 || type == CV_8UC3 ? CV_AA : 8;
|
|
|
|
|
|
|
|
if( !found )
|
|
|
|
{
|
|
|
|
CvScalar color(0,0,255,0);
|
|
|
|
if( cn == 1 )
|
|
|
|
color = cvScalarAll(200);
|
|
|
|
color.val[0] *= scale;
|
|
|
|
color.val[1] *= scale;
|
|
|
|
color.val[2] *= scale;
|
|
|
|
color.val[3] *= scale;
|
|
|
|
|
|
|
|
for( i = 0; i < count; i++ )
|
|
|
|
{
|
|
|
|
CvPoint pt;
|
|
|
|
pt.x = cvRound(corners[i].x*(1 << shift));
|
|
|
|
pt.y = cvRound(corners[i].y*(1 << shift));
|
|
|
|
cvLine( image, cvPoint( pt.x - r, pt.y - r ),
|
|
|
|
cvPoint( pt.x + r, pt.y + r ), color, 1, line_type, shift );
|
|
|
|
cvLine( image, cvPoint( pt.x - r, pt.y + r),
|
|
|
|
cvPoint( pt.x + r, pt.y - r), color, 1, line_type, shift );
|
|
|
|
cvCircle( image, pt, r+(1<<shift), color, 1, line_type, shift );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int x, y;
|
|
|
|
CvPoint prev_pt;
|
|
|
|
const int line_max = 7;
|
|
|
|
static const CvScalar line_colors[line_max] =
|
|
|
|
{
|
|
|
|
CvScalar(0,0,255),
|
|
|
|
CvScalar(0,128,255),
|
|
|
|
CvScalar(0,200,200),
|
|
|
|
CvScalar(0,255,0),
|
|
|
|
CvScalar(200,200,0),
|
|
|
|
CvScalar(255,0,0),
|
|
|
|
CvScalar(255,0,255)
|
|
|
|
};
|
|
|
|
|
|
|
|
for( y = 0, i = 0; y < pattern_size.height; y++ )
|
|
|
|
{
|
|
|
|
CvScalar color = line_colors[y % line_max];
|
|
|
|
if( cn == 1 )
|
|
|
|
color = cvScalarAll(200);
|
|
|
|
color.val[0] *= scale;
|
|
|
|
color.val[1] *= scale;
|
|
|
|
color.val[2] *= scale;
|
|
|
|
color.val[3] *= scale;
|
|
|
|
|
|
|
|
for( x = 0; x < pattern_size.width; x++, i++ )
|
|
|
|
{
|
|
|
|
CvPoint pt;
|
|
|
|
pt.x = cvRound(corners[i].x*(1 << shift));
|
|
|
|
pt.y = cvRound(corners[i].y*(1 << shift));
|
|
|
|
|
|
|
|
if( i != 0 )
|
|
|
|
cvLine( image, prev_pt, pt, color, 1, line_type, shift );
|
|
|
|
|
|
|
|
cvLine( image, cvPoint(pt.x - r, pt.y - r),
|
|
|
|
cvPoint(pt.x + r, pt.y + r), color, 1, line_type, shift );
|
|
|
|
cvLine( image, cvPoint(pt.x - r, pt.y + r),
|
|
|
|
cvPoint(pt.x + r, pt.y - r), color, 1, line_type, shift );
|
|
|
|
cvCircle( image, pt, r+(1<<shift), color, 1, line_type, shift );
|
|
|
|
prev_pt = pt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool cv::findChessboardCorners( InputArray _image, Size patternSize,
|
|
|
|
OutputArray corners, int flags )
|
|
|
|
{
|
|
|
|
CV_INSTRUMENT_REGION()
|
|
|
|
|
|
|
|
int count = patternSize.area()*2;
|
|
|
|
std::vector<Point2f> tmpcorners(count+1);
|
|
|
|
Mat image = _image.getMat(); CvMat c_image = image;
|
|
|
|
bool ok = cvFindChessboardCorners(&c_image, patternSize,
|
|
|
|
(CvPoint2D32f*)&tmpcorners[0], &count, flags ) > 0;
|
|
|
|
if( count > 0 )
|
|
|
|
{
|
|
|
|
tmpcorners.resize(count);
|
|
|
|
Mat(tmpcorners).copyTo(corners);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
corners.release();
|
|
|
|
return ok;
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace
|
|
|
|
{
|
|
|
|
int quiet_error(int /*status*/, const char* /*func_name*/,
|
|
|
|
const char* /*err_msg*/, const char* /*file_name*/,
|
|
|
|
int /*line*/, void* /*userdata*/ )
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void cv::drawChessboardCorners( InputOutputArray _image, Size patternSize,
|
|
|
|
InputArray _corners,
|
|
|
|
bool patternWasFound )
|
|
|
|
{
|
|
|
|
CV_INSTRUMENT_REGION()
|
|
|
|
|
|
|
|
Mat corners = _corners.getMat();
|
|
|
|
if( corners.empty() )
|
|
|
|
return;
|
|
|
|
Mat image = _image.getMat(); CvMat c_image = image;
|
|
|
|
int nelems = corners.checkVector(2, CV_32F, true);
|
|
|
|
CV_Assert(nelems >= 0);
|
|
|
|
cvDrawChessboardCorners( &c_image, patternSize, corners.ptr<CvPoint2D32f>(),
|
|
|
|
nelems, patternWasFound );
|
|
|
|
}
|
|
|
|
|
|
|
|
bool cv::findCirclesGrid( InputArray image, Size patternSize,
|
|
|
|
OutputArray centers, int flags,
|
|
|
|
const Ptr<FeatureDetector> &blobDetector,
|
|
|
|
CirclesGridFinderParameters parameters)
|
|
|
|
{
|
|
|
|
CirclesGridFinderParameters2 parameters2;
|
|
|
|
*((CirclesGridFinderParameters*)¶meters2) = parameters;
|
|
|
|
return cv::findCirclesGrid2(image, patternSize, centers, flags, blobDetector, parameters2);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool cv::findCirclesGrid2( InputArray _image, Size patternSize,
|
|
|
|
OutputArray _centers, int flags, const Ptr<FeatureDetector> &blobDetector,
|
|
|
|
CirclesGridFinderParameters2 parameters)
|
|
|
|
{
|
|
|
|
CV_INSTRUMENT_REGION()
|
|
|
|
|
|
|
|
bool isAsymmetricGrid = (flags & CALIB_CB_ASYMMETRIC_GRID) ? true : false;
|
|
|
|
bool isSymmetricGrid = (flags & CALIB_CB_SYMMETRIC_GRID ) ? true : false;
|
|
|
|
CV_Assert(isAsymmetricGrid ^ isSymmetricGrid);
|
|
|
|
|
|
|
|
Mat image = _image.getMat();
|
|
|
|
std::vector<Point2f> centers;
|
|
|
|
|
|
|
|
std::vector<KeyPoint> keypoints;
|
|
|
|
blobDetector->detect(image, keypoints);
|
|
|
|
std::vector<Point2f> points;
|
|
|
|
for (size_t i = 0; i < keypoints.size(); i++)
|
|
|
|
{
|
|
|
|
points.push_back (keypoints[i].pt);
|
|
|
|
}
|
|
|
|
|
|
|
|
if(flags & CALIB_CB_ASYMMETRIC_GRID)
|
|
|
|
parameters.gridType = CirclesGridFinderParameters::ASYMMETRIC_GRID;
|
|
|
|
if(flags & CALIB_CB_SYMMETRIC_GRID)
|
|
|
|
parameters.gridType = CirclesGridFinderParameters::SYMMETRIC_GRID;
|
|
|
|
|
|
|
|
if(flags & CALIB_CB_CLUSTERING)
|
|
|
|
{
|
|
|
|
CirclesGridClusterFinder circlesGridClusterFinder(parameters);
|
|
|
|
circlesGridClusterFinder.findGrid(points, patternSize, centers);
|
|
|
|
Mat(centers).copyTo(_centers);
|
|
|
|
return !centers.empty();
|
|
|
|
}
|
|
|
|
|
|
|
|
const int attempts = 2;
|
|
|
|
const size_t minHomographyPoints = 4;
|
|
|
|
Mat H;
|
|
|
|
for (int i = 0; i < attempts; i++)
|
|
|
|
{
|
|
|
|
centers.clear();
|
|
|
|
CirclesGridFinder boxFinder(patternSize, points, parameters);
|
|
|
|
bool isFound = false;
|
|
|
|
#define BE_QUIET 1
|
|
|
|
#if BE_QUIET
|
|
|
|
void* oldCbkData;
|
|
|
|
ErrorCallback oldCbk = redirectError(quiet_error, 0, &oldCbkData);
|
|
|
|
#endif
|
|
|
|
CV_TRY
|
|
|
|
{
|
|
|
|
isFound = boxFinder.findHoles();
|
|
|
|
}
|
|
|
|
CV_CATCH(Exception, e)
|
|
|
|
{
|
|
|
|
CV_UNUSED(e);
|
|
|
|
}
|
|
|
|
#if BE_QUIET
|
|
|
|
redirectError(oldCbk, oldCbkData);
|
|
|
|
#endif
|
|
|
|
if (isFound)
|
|
|
|
{
|
|
|
|
switch(parameters.gridType)
|
|
|
|
{
|
|
|
|
case CirclesGridFinderParameters::SYMMETRIC_GRID:
|
|
|
|
boxFinder.getHoles(centers);
|
|
|
|
break;
|
|
|
|
case CirclesGridFinderParameters::ASYMMETRIC_GRID:
|
|
|
|
boxFinder.getAsymmetricHoles(centers);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
CV_Error(CV_StsBadArg, "Unkown pattern type");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i != 0)
|
|
|
|
{
|
|
|
|
Mat orgPointsMat;
|
|
|
|
transform(centers, orgPointsMat, H.inv());
|
|
|
|
convertPointsFromHomogeneous(orgPointsMat, centers);
|
|
|
|
}
|
|
|
|
Mat(centers).copyTo(_centers);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
boxFinder.getHoles(centers);
|
|
|
|
if (i != attempts - 1)
|
|
|
|
{
|
|
|
|
if (centers.size() < minHomographyPoints)
|
|
|
|
break;
|
|
|
|
H = CirclesGridFinder::rectifyGrid(boxFinder.getDetectedGridSize(), centers, points, points);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
Mat(centers).copyTo(_centers);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool cv::findCirclesGrid( InputArray _image, Size patternSize,
|
|
|
|
OutputArray _centers, int flags, const Ptr<FeatureDetector> &blobDetector)
|
|
|
|
{
|
|
|
|
return cv::findCirclesGrid2(_image, patternSize, _centers, flags, blobDetector, CirclesGridFinderParameters2());
|
|
|
|
}
|
|
|
|
|
|
|
|
/* End of file. */
|