|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#include "opencv2/highgui.hpp"
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
using namespace cv;
|
|
|
|
|
|
|
|
const string FEATURES2D_DIR = "features2d";
|
|
|
|
const string IMAGE_FILENAME = "tsukuba.png";
|
|
|
|
const string DESCRIPTOR_DIR = FEATURES2D_DIR + "/descriptor_extractors";
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
* Regression tests for descriptor extractors. *
|
|
|
|
\****************************************************************************************/
|
|
|
|
static void writeMatInBin( const Mat& mat, const string& filename )
|
|
|
|
{
|
|
|
|
FILE* f = fopen( filename.c_str(), "wb");
|
|
|
|
if( f )
|
|
|
|
{
|
|
|
|
int type = mat.type();
|
|
|
|
fwrite( (void*)&mat.rows, sizeof(int), 1, f );
|
|
|
|
fwrite( (void*)&mat.cols, sizeof(int), 1, f );
|
|
|
|
fwrite( (void*)&type, sizeof(int), 1, f );
|
|
|
|
int dataSize = (int)(mat.step * mat.rows * mat.channels());
|
|
|
|
fwrite( (void*)&dataSize, sizeof(int), 1, f );
|
|
|
|
fwrite( (void*)mat.data, 1, dataSize, f );
|
|
|
|
fclose(f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static Mat readMatFromBin( const string& filename )
|
|
|
|
{
|
|
|
|
FILE* f = fopen( filename.c_str(), "rb" );
|
|
|
|
if( f )
|
|
|
|
{
|
|
|
|
int rows, cols, type, dataSize;
|
|
|
|
size_t elements_read1 = fread( (void*)&rows, sizeof(int), 1, f );
|
|
|
|
size_t elements_read2 = fread( (void*)&cols, sizeof(int), 1, f );
|
|
|
|
size_t elements_read3 = fread( (void*)&type, sizeof(int), 1, f );
|
|
|
|
size_t elements_read4 = fread( (void*)&dataSize, sizeof(int), 1, f );
|
|
|
|
CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1);
|
|
|
|
|
|
|
|
uchar* data = (uchar*)cvAlloc(dataSize);
|
|
|
|
size_t elements_read = fread( (void*)data, 1, dataSize, f );
|
|
|
|
CV_Assert(elements_read == (size_t)(dataSize));
|
|
|
|
fclose(f);
|
|
|
|
|
|
|
|
return Mat( rows, cols, type, data );
|
|
|
|
}
|
|
|
|
return Mat();
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class Distance>
|
|
|
|
class CV_DescriptorExtractorTest : public cvtest::BaseTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
typedef typename Distance::ValueType ValueType;
|
|
|
|
typedef typename Distance::ResultType DistanceType;
|
|
|
|
|
|
|
|
CV_DescriptorExtractorTest( const string _name, DistanceType _maxDist, const Ptr<DescriptorExtractor>& _dextractor,
|
|
|
|
Distance d = Distance() ):
|
|
|
|
name(_name), maxDist(_maxDist), dextractor(_dextractor), distance(d) {}
|
|
|
|
protected:
|
|
|
|
virtual void createDescriptorExtractor() {}
|
|
|
|
|
|
|
|
void compareDescriptors( const Mat& validDescriptors, const Mat& calcDescriptors )
|
|
|
|
{
|
|
|
|
if( validDescriptors.size != calcDescriptors.size || validDescriptors.type() != calcDescriptors.type() )
|
|
|
|
{
|
|
|
|
ts->printf(cvtest::TS::LOG, "Valid and computed descriptors matrices must have the same size and type.\n");
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
CV_Assert( DataType<ValueType>::type == validDescriptors.type() );
|
|
|
|
|
|
|
|
int dimension = validDescriptors.cols;
|
|
|
|
DistanceType curMaxDist = std::numeric_limits<DistanceType>::min();
|
|
|
|
for( int y = 0; y < validDescriptors.rows; y++ )
|
|
|
|
{
|
|
|
|
DistanceType dist = distance( validDescriptors.ptr<ValueType>(y), calcDescriptors.ptr<ValueType>(y), dimension );
|
|
|
|
if( dist > curMaxDist )
|
|
|
|
curMaxDist = dist;
|
|
|
|
}
|
|
|
|
|
|
|
|
stringstream ss;
|
|
|
|
ss << "Max distance between valid and computed descriptors " << curMaxDist;
|
|
|
|
if( curMaxDist < maxDist )
|
|
|
|
ss << "." << endl;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
ss << ">" << maxDist << " - bad accuracy!"<< endl;
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
|
|
|
}
|
|
|
|
ts->printf(cvtest::TS::LOG, ss.str().c_str() );
|
|
|
|
}
|
|
|
|
|
|
|
|
void emptyDataTest()
|
|
|
|
{
|
|
|
|
assert( !dextractor.empty() );
|
|
|
|
|
|
|
|
// One image.
|
|
|
|
Mat image;
|
|
|
|
vector<KeyPoint> keypoints;
|
|
|
|
Mat descriptors;
|
|
|
|
|
|
|
|
try
|
|
|
|
{
|
|
|
|
dextractor->compute( image, keypoints, descriptors );
|
|
|
|
}
|
|
|
|
catch(...)
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "compute() on empty image and empty keypoints must not generate exception (1).\n");
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
|
|
}
|
|
|
|
|
|
|
|
image.create( 50, 50, CV_8UC3 );
|
|
|
|
try
|
|
|
|
{
|
|
|
|
dextractor->compute( image, keypoints, descriptors );
|
|
|
|
}
|
|
|
|
catch(...)
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "compute() on nonempty image and empty keypoints must not generate exception (1).\n");
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
|
|
}
|
|
|
|
|
|
|
|
// Several images.
|
|
|
|
vector<Mat> images;
|
|
|
|
vector<vector<KeyPoint> > keypointsCollection;
|
|
|
|
vector<Mat> descriptorsCollection;
|
|
|
|
try
|
|
|
|
{
|
|
|
|
dextractor->compute( images, keypointsCollection, descriptorsCollection );
|
|
|
|
}
|
|
|
|
catch(...)
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "compute() on empty images and empty keypoints collection must not generate exception (2).\n");
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void regressionTest()
|
|
|
|
{
|
|
|
|
assert( !dextractor.empty() );
|
|
|
|
|
|
|
|
// Read the test image.
|
|
|
|
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
|
|
|
|
|
|
|
|
Mat img = imread( imgFilename );
|
|
|
|
if( img.empty() )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
vector<KeyPoint> keypoints;
|
|
|
|
FileStorage fs( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::READ );
|
|
|
|
if( fs.isOpened() )
|
|
|
|
{
|
|
|
|
read( fs.getFirstTopLevelNode(), keypoints );
|
|
|
|
|
|
|
|
Mat calcDescriptors;
|
|
|
|
double t = (double)getTickCount();
|
|
|
|
dextractor->compute( img, keypoints, calcDescriptors );
|
|
|
|
t = getTickCount() - t;
|
|
|
|
ts->printf(cvtest::TS::LOG, "\nAverage time of computing one descriptor = %g ms.\n", t/((double)cvGetTickFrequency()*1000.)/calcDescriptors.rows);
|
|
|
|
|
|
|
|
if( calcDescriptors.rows != (int)keypoints.size() )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "Count of computed descriptors and keypoints count must be equal.\n" );
|
|
|
|
ts->printf( cvtest::TS::LOG, "Count of keypoints is %d.\n", (int)keypoints.size() );
|
|
|
|
ts->printf( cvtest::TS::LOG, "Count of computed descriptors is %d.\n", calcDescriptors.rows );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( calcDescriptors.cols != dextractor->descriptorSize() || calcDescriptors.type() != dextractor->descriptorType() )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "Incorrect descriptor size or descriptor type.\n" );
|
|
|
|
ts->printf( cvtest::TS::LOG, "Expected size is %d.\n", dextractor->descriptorSize() );
|
|
|
|
ts->printf( cvtest::TS::LOG, "Calculated size is %d.\n", calcDescriptors.cols );
|
|
|
|
ts->printf( cvtest::TS::LOG, "Expected type is %d.\n", dextractor->descriptorType() );
|
|
|
|
ts->printf( cvtest::TS::LOG, "Calculated type is %d.\n", calcDescriptors.type() );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO read and write descriptor extractor parameters and check them
|
|
|
|
Mat validDescriptors = readDescriptors();
|
|
|
|
if( !validDescriptors.empty() )
|
|
|
|
compareDescriptors( validDescriptors, calcDescriptors );
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if( !writeDescriptors( calcDescriptors ) )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "Descriptors can not be written.\n" );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "Compute and write keypoints.\n" );
|
|
|
|
fs.open( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::WRITE );
|
|
|
|
if( fs.isOpened() )
|
|
|
|
{
|
|
|
|
ORB fd;
|
|
|
|
fd.detect(img, keypoints);
|
|
|
|
write( fs, "keypoints", keypoints );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
ts->printf(cvtest::TS::LOG, "File for writting keypoints can not be opened.\n");
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void run(int)
|
|
|
|
{
|
|
|
|
createDescriptorExtractor();
|
|
|
|
if( dextractor.empty() )
|
|
|
|
{
|
|
|
|
ts->printf(cvtest::TS::LOG, "Descriptor extractor is empty.\n");
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
emptyDataTest();
|
|
|
|
regressionTest();
|
|
|
|
|
|
|
|
ts->set_failed_test_info( cvtest::TS::OK );
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual Mat readDescriptors()
|
|
|
|
{
|
|
|
|
Mat res = readMatFromBin( string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) );
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual bool writeDescriptors( Mat& descs )
|
|
|
|
{
|
|
|
|
writeMatInBin( descs, string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) );
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
string name;
|
|
|
|
const DistanceType maxDist;
|
|
|
|
Ptr<DescriptorExtractor> dextractor;
|
|
|
|
Distance distance;
|
|
|
|
|
|
|
|
private:
|
|
|
|
CV_DescriptorExtractorTest& operator=(const CV_DescriptorExtractorTest&) { return *this; }
|
|
|
|
};
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
* Tests registrations *
|
|
|
|
\****************************************************************************************/
|
|
|
|
|
|
|
|
TEST( Features2d_DescriptorExtractor_BRISK, regression )
|
|
|
|
{
|
|
|
|
CV_DescriptorExtractorTest<Hamming> test( "descriptor-brisk", (CV_DescriptorExtractorTest<Hamming>::DistanceType)2.f,
|
|
|
|
DescriptorExtractor::create("BRISK") );
|
|
|
|
test.safe_run();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST( Features2d_DescriptorExtractor_ORB, regression )
|
|
|
|
{
|
|
|
|
// TODO adjust the parameters below
|
|
|
|
CV_DescriptorExtractorTest<Hamming> test( "descriptor-orb", (CV_DescriptorExtractorTest<Hamming>::DistanceType)12.f,
|
|
|
|
DescriptorExtractor::create("ORB") );
|
|
|
|
test.safe_run();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST( Features2d_DescriptorExtractor_FREAK, regression )
|
|
|
|
{
|
|
|
|
// TODO adjust the parameters below
|
|
|
|
CV_DescriptorExtractorTest<Hamming> test( "descriptor-freak", (CV_DescriptorExtractorTest<Hamming>::DistanceType)12.f,
|
|
|
|
DescriptorExtractor::create("FREAK") );
|
|
|
|
test.safe_run();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST( Features2d_DescriptorExtractor_BRIEF, regression )
|
|
|
|
{
|
|
|
|
CV_DescriptorExtractorTest<Hamming> test( "descriptor-brief", 1,
|
|
|
|
DescriptorExtractor::create("BRIEF") );
|
|
|
|
test.safe_run();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST( Features2d_DescriptorExtractor_OpponentBRIEF, regression )
|
|
|
|
{
|
|
|
|
CV_DescriptorExtractorTest<Hamming> test( "descriptor-opponent-brief", 1,
|
|
|
|
DescriptorExtractor::create("OpponentBRIEF") );
|
|
|
|
test.safe_run();
|
|
|
|
}
|