|
|
|
//
|
|
|
|
// The full "Square Detector" program.
|
|
|
|
// It loads several images subsequentally and tries to find squares in
|
|
|
|
// each image
|
|
|
|
//
|
|
|
|
#include "opencv2/imgproc/imgproc_c.h"
|
|
|
|
#include "opencv2/highgui/highgui.hpp"
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <math.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
int thresh = 50;
|
|
|
|
IplImage* img = 0;
|
|
|
|
IplImage* img0 = 0;
|
|
|
|
CvMemStorage* storage = 0;
|
|
|
|
const char* wndname = "Square Detection Demo";
|
|
|
|
|
|
|
|
// helper function:
|
|
|
|
// finds a cosine of angle between vectors
|
|
|
|
// from pt0->pt1 and from pt0->pt2
|
|
|
|
double angle( CvPoint* pt1, CvPoint* pt2, CvPoint* pt0 )
|
|
|
|
{
|
|
|
|
double dx1 = pt1->x - pt0->x;
|
|
|
|
double dy1 = pt1->y - pt0->y;
|
|
|
|
double dx2 = pt2->x - pt0->x;
|
|
|
|
double dy2 = pt2->y - pt0->y;
|
|
|
|
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
|
|
|
|
}
|
|
|
|
|
|
|
|
// returns sequence of squares detected on the image.
|
|
|
|
// the sequence is stored in the specified memory storage
|
|
|
|
CvSeq* findSquares4( IplImage* img, CvMemStorage* storage )
|
|
|
|
{
|
|
|
|
CvSeq* contours;
|
|
|
|
int i, c, l, N = 11;
|
|
|
|
CvSize sz = cvSize( img->width & -2, img->height & -2 );
|
|
|
|
IplImage* timg = cvCloneImage( img ); // make a copy of input image
|
|
|
|
IplImage* gray = cvCreateImage( sz, 8, 1 );
|
|
|
|
IplImage* pyr = cvCreateImage( cvSize(sz.width/2, sz.height/2), 8, 3 );
|
|
|
|
IplImage* tgray;
|
|
|
|
CvSeq* result;
|
|
|
|
double s, t;
|
|
|
|
// create empty sequence that will contain points -
|
|
|
|
// 4 points per square (the square's vertices)
|
|
|
|
CvSeq* squares = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvPoint), storage );
|
|
|
|
// select the maximum ROI in the image
|
|
|
|
// with the width and height divisible by 2
|
|
|
|
cvSetImageROI( timg, cvRect( 0, 0, sz.width, sz.height ));
|
|
|
|
|
|
|
|
// down-scale and upscale the image to filter out the noise
|
|
|
|
cvPyrDown( timg, pyr, 7 );
|
|
|
|
cvPyrUp( pyr, timg, 7 );
|
|
|
|
tgray = cvCreateImage( sz, 8, 1 );
|
|
|
|
|
|
|
|
// find squares in every color plane of the image
|
|
|
|
for( c = 0; c < 3; c++ )
|
|
|
|
{
|
|
|
|
// extract the c-th color plane
|
|
|
|
cvSetImageCOI( timg, c+1 );
|
|
|
|
cvCopy( timg, tgray, 0 );
|
|
|
|
|
|
|
|
// try several threshold levels
|
|
|
|
for( l = 0; l < N; l++ )
|
|
|
|
{
|
|
|
|
// hack: use Canny instead of zero threshold level.
|
|
|
|
// Canny helps to catch squares with gradient shading
|
|
|
|
if( l == 0 )
|
|
|
|
{
|
|
|
|
// apply Canny. Take the upper threshold from slider
|
|
|
|
// and set the lower to 0 (which forces edges merging)
|
|
|
|
cvCanny( tgray, gray, 0, thresh, 5 );
|
|
|
|
// dilate canny output to remove potential
|
|
|
|
// holes between edge segments
|
|
|
|
cvDilate( gray, gray, 0, 1 );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// apply threshold if l!=0:
|
|
|
|
// tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
|
|
|
|
cvThreshold( tgray, gray, (l+1)*255/N, 255, CV_THRESH_BINARY );
|
|
|
|
}
|
|
|
|
|
|
|
|
// find contours and store them all as a list
|
|
|
|
cvFindContours( gray, storage, &contours, sizeof(CvContour),
|
|
|
|
CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0) );
|
|
|
|
|
|
|
|
// test each contour
|
|
|
|
while( contours )
|
|
|
|
{
|
|
|
|
// approximate contour with accuracy proportional
|
|
|
|
// to the contour perimeter
|
|
|
|
result = cvApproxPoly( contours, sizeof(CvContour), storage,
|
|
|
|
CV_POLY_APPROX_DP, cvContourPerimeter(contours)*0.02, 0 );
|
|
|
|
// square contours should have 4 vertices after approximation
|
|
|
|
// relatively large area (to filter out noisy contours)
|
|
|
|
// and be convex.
|
|
|
|
// Note: absolute value of an area is used because
|
|
|
|
// area may be positive or negative - in accordance with the
|
|
|
|
// contour orientation
|
|
|
|
if( result->total == 4 &&
|
|
|
|
cvContourArea(result,CV_WHOLE_SEQ,0) > 1000 &&
|
|
|
|
cvCheckContourConvexity(result) )
|
|
|
|
{
|
|
|
|
s = 0;
|
|
|
|
|
|
|
|
for( i = 0; i < 5; i++ )
|
|
|
|
{
|
|
|
|
// find minimum angle between joint
|
|
|
|
// edges (maximum of cosine)
|
|
|
|
if( i >= 2 )
|
|
|
|
{
|
|
|
|
t = fabs(angle(
|
|
|
|
(CvPoint*)cvGetSeqElem( result, i ),
|
|
|
|
(CvPoint*)cvGetSeqElem( result, i-2 ),
|
|
|
|
(CvPoint*)cvGetSeqElem( result, i-1 )));
|
|
|
|
s = s > t ? s : t;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// if cosines of all angles are small
|
|
|
|
// (all angles are ~90 degree) then write quandrange
|
|
|
|
// vertices to resultant sequence
|
|
|
|
if( s < 0.3 )
|
|
|
|
for( i = 0; i < 4; i++ )
|
|
|
|
cvSeqPush( squares,
|
|
|
|
(CvPoint*)cvGetSeqElem( result, i ));
|
|
|
|
}
|
|
|
|
|
|
|
|
// take the next contour
|
|
|
|
contours = contours->h_next;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// release all the temporary images
|
|
|
|
cvReleaseImage( &gray );
|
|
|
|
cvReleaseImage( &pyr );
|
|
|
|
cvReleaseImage( &tgray );
|
|
|
|
cvReleaseImage( &timg );
|
|
|
|
|
|
|
|
return squares;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// the function draws all the squares in the image
|
|
|
|
void drawSquares( IplImage* img, CvSeq* squares )
|
|
|
|
{
|
|
|
|
CvSeqReader reader;
|
|
|
|
IplImage* cpy = cvCloneImage( img );
|
|
|
|
int i;
|
|
|
|
|
|
|
|
// initialize reader of the sequence
|
|
|
|
cvStartReadSeq( squares, &reader, 0 );
|
|
|
|
|
|
|
|
// read 4 sequence elements at a time (all vertices of a square)
|
|
|
|
for( i = 0; i < squares->total; i += 4 )
|
|
|
|
{
|
|
|
|
CvPoint pt[4], *rect = pt;
|
|
|
|
int count = 4;
|
|
|
|
|
|
|
|
// read 4 vertices
|
|
|
|
CV_READ_SEQ_ELEM( pt[0], reader );
|
|
|
|
CV_READ_SEQ_ELEM( pt[1], reader );
|
|
|
|
CV_READ_SEQ_ELEM( pt[2], reader );
|
|
|
|
CV_READ_SEQ_ELEM( pt[3], reader );
|
|
|
|
|
|
|
|
// draw the square as a closed polyline
|
|
|
|
cvPolyLine( cpy, &rect, &count, 1, 1, CV_RGB(0,255,0), 3, CV_AA, 0 );
|
|
|
|
}
|
|
|
|
|
|
|
|
// show the resultant image
|
|
|
|
cvShowImage( wndname, cpy );
|
|
|
|
cvReleaseImage( &cpy );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
char* names[] = { "pic1.png", "pic2.png", "pic3.png",
|
|
|
|
"pic4.png", "pic5.png", "pic6.png", 0 };
|
|
|
|
|
|
|
|
int main(int argc, char** argv)
|
|
|
|
{
|
|
|
|
int i, c;
|
|
|
|
// create memory storage that will contain all the dynamic data
|
|
|
|
storage = cvCreateMemStorage(0);
|
|
|
|
|
|
|
|
for( i = 0; names[i] != 0; i++ )
|
|
|
|
{
|
|
|
|
// load i-th image
|
|
|
|
img0 = cvLoadImage( names[i], 1 );
|
|
|
|
if( !img0 )
|
|
|
|
{
|
|
|
|
printf("Couldn't load %s\n", names[i] );
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
img = cvCloneImage( img0 );
|
|
|
|
|
|
|
|
// create window and a trackbar (slider) with parent "image" and set callback
|
|
|
|
// (the slider regulates upper threshold, passed to Canny edge detector)
|
|
|
|
cvNamedWindow( wndname, 1 );
|
|
|
|
|
|
|
|
// find and draw the squares
|
|
|
|
drawSquares( img, findSquares4( img, storage ) );
|
|
|
|
|
|
|
|
// wait for key.
|
|
|
|
// Also the function cvWaitKey takes care of event processing
|
|
|
|
c = cvWaitKey(0);
|
|
|
|
// release both images
|
|
|
|
cvReleaseImage( &img );
|
|
|
|
cvReleaseImage( &img0 );
|
|
|
|
// clear memory storage - reset free space position
|
|
|
|
cvClearMemStorage( storage );
|
|
|
|
if( (char)c == 27 )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
cvDestroyWindow( wndname );
|
|
|
|
|
|
|
|
cvReleaseMemStorage(&storage);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|