|
|
|
#include "opencv2/core.hpp"
|
|
|
|
#include "opencv2/highgui.hpp"
|
|
|
|
#include "opencv2/imgcodecs.hpp"
|
|
|
|
#include "opencv2/imgproc.hpp"
|
|
|
|
#include "opencv2/ml.hpp"
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <iostream>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
const int SZ = 20; // size of each digit is SZ x SZ
|
|
|
|
const int CLASS_N = 10;
|
|
|
|
const char* DIGITS_FN = "digits.png";
|
|
|
|
|
|
|
|
static void help(char** argv)
|
|
|
|
{
|
|
|
|
cout <<
|
|
|
|
"\n"
|
|
|
|
"SVM and KNearest digit recognition.\n"
|
|
|
|
"\n"
|
|
|
|
"Sample loads a dataset of handwritten digits from 'digits.png'.\n"
|
|
|
|
"Then it trains a SVM and KNearest classifiers on it and evaluates\n"
|
|
|
|
"their accuracy.\n"
|
|
|
|
"\n"
|
|
|
|
"Following preprocessing is applied to the dataset:\n"
|
|
|
|
" - Moment-based image deskew (see deskew())\n"
|
|
|
|
" - Digit images are split into 4 10x10 cells and 16-bin\n"
|
|
|
|
" histogram of oriented gradients is computed for each\n"
|
|
|
|
" cell\n"
|
|
|
|
" - Transform histograms to space with Hellinger metric (see [1] (RootSIFT))\n"
|
|
|
|
"\n"
|
|
|
|
"\n"
|
|
|
|
"[1] R. Arandjelovic, A. Zisserman\n"
|
|
|
|
" \"Three things everyone should know to improve object retrieval\"\n"
|
|
|
|
" http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf\n"
|
|
|
|
"\n"
|
|
|
|
"Usage:\n"
|
|
|
|
<< argv[0] << endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void split2d(const Mat& image, const Size cell_size, vector<Mat>& cells)
|
|
|
|
{
|
|
|
|
int height = image.rows;
|
|
|
|
int width = image.cols;
|
|
|
|
|
|
|
|
int sx = cell_size.width;
|
|
|
|
int sy = cell_size.height;
|
|
|
|
|
|
|
|
cells.clear();
|
|
|
|
|
|
|
|
for (int i = 0; i < height; i += sy)
|
|
|
|
{
|
|
|
|
for (int j = 0; j < width; j += sx)
|
|
|
|
{
|
|
|
|
cells.push_back(image(Rect(j, i, sx, sy)));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void load_digits(const char* fn, vector<Mat>& digits, vector<int>& labels)
|
|
|
|
{
|
|
|
|
digits.clear();
|
|
|
|
labels.clear();
|
|
|
|
|
|
|
|
String filename = samples::findFile(fn);
|
|
|
|
|
|
|
|
cout << "Loading " << filename << " ..." << endl;
|
|
|
|
|
|
|
|
Mat digits_img = imread(filename, IMREAD_GRAYSCALE);
|
|
|
|
split2d(digits_img, Size(SZ, SZ), digits);
|
|
|
|
|
|
|
|
for (int i = 0; i < CLASS_N; i++)
|
|
|
|
{
|
|
|
|
for (size_t j = 0; j < digits.size() / CLASS_N; j++)
|
|
|
|
{
|
|
|
|
labels.push_back(i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void deskew(const Mat& img, Mat& deskewed_img)
|
|
|
|
{
|
|
|
|
Moments m = moments(img);
|
|
|
|
|
|
|
|
if (abs(m.mu02) < 0.01)
|
|
|
|
{
|
|
|
|
deskewed_img = img.clone();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
float skew = (float)(m.mu11 / m.mu02);
|
|
|
|
float M_vals[2][3] = {{1, skew, -0.5f * SZ * skew}, {0, 1, 0}};
|
|
|
|
Mat M(Size(3, 2), CV_32F);
|
|
|
|
|
|
|
|
for (int i = 0; i < M.rows; i++)
|
|
|
|
{
|
|
|
|
for (int j = 0; j < M.cols; j++)
|
|
|
|
{
|
|
|
|
M.at<float>(i, j) = M_vals[i][j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
warpAffine(img, deskewed_img, M, Size(SZ, SZ), WARP_INVERSE_MAP | INTER_LINEAR);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void mosaic(const int width, const vector<Mat>& images, Mat& grid)
|
|
|
|
{
|
|
|
|
int mat_width = SZ * width;
|
|
|
|
int mat_height = SZ * (int)ceil((double)images.size() / width);
|
|
|
|
|
|
|
|
if (!images.empty())
|
|
|
|
{
|
|
|
|
grid = Mat(Size(mat_width, mat_height), images[0].type());
|
|
|
|
|
|
|
|
for (size_t i = 0; i < images.size(); i++)
|
|
|
|
{
|
|
|
|
Mat location_on_grid = grid(Rect(SZ * ((int)i % width), SZ * ((int)i / width), SZ, SZ));
|
|
|
|
images[i].copyTo(location_on_grid);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void evaluate_model(const vector<float>& predictions, const vector<Mat>& digits, const vector<int>& labels, Mat& mos)
|
|
|
|
{
|
|
|
|
double err = 0;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < predictions.size(); i++)
|
|
|
|
{
|
|
|
|
if ((int)predictions[i] != labels[i])
|
|
|
|
{
|
|
|
|
err++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
err /= predictions.size();
|
|
|
|
|
|
|
|
cout << format("error: %.2f %%", err * 100) << endl;
|
|
|
|
|
|
|
|
int confusion[10][10] = {};
|
|
|
|
|
|
|
|
for (size_t i = 0; i < labels.size(); i++)
|
|
|
|
{
|
|
|
|
confusion[labels[i]][(int)predictions[i]]++;
|
|
|
|
}
|
|
|
|
|
|
|
|
cout << "confusion matrix:" << endl;
|
|
|
|
for (int i = 0; i < 10; i++)
|
|
|
|
{
|
|
|
|
for (int j = 0; j < 10; j++)
|
|
|
|
{
|
|
|
|
cout << format("%2d ", confusion[i][j]);
|
|
|
|
}
|
|
|
|
cout << endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
cout << endl;
|
|
|
|
|
|
|
|
vector<Mat> vis;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < digits.size(); i++)
|
|
|
|
{
|
|
|
|
Mat img;
|
|
|
|
cvtColor(digits[i], img, COLOR_GRAY2BGR);
|
|
|
|
|
|
|
|
if ((int)predictions[i] != labels[i])
|
|
|
|
{
|
|
|
|
for (int j = 0; j < img.rows; j++)
|
|
|
|
{
|
|
|
|
for (int k = 0; k < img.cols; k++)
|
|
|
|
{
|
|
|
|
img.at<Vec3b>(j, k)[0] = 0;
|
|
|
|
img.at<Vec3b>(j, k)[1] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
vis.push_back(img);
|
|
|
|
}
|
|
|
|
|
|
|
|
mosaic(25, vis, mos);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void bincount(const Mat& x, const Mat& weights, const int min_length, vector<double>& bins)
|
|
|
|
{
|
|
|
|
double max_x_val = 0;
|
|
|
|
minMaxLoc(x, NULL, &max_x_val);
|
|
|
|
|
|
|
|
bins = vector<double>(max((int)max_x_val, min_length));
|
|
|
|
|
|
|
|
for (int i = 0; i < x.rows; i++)
|
|
|
|
{
|
|
|
|
for (int j = 0; j < x.cols; j++)
|
|
|
|
{
|
|
|
|
bins[x.at<int>(i, j)] += weights.at<float>(i, j);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void preprocess_hog(const vector<Mat>& digits, Mat& hog)
|
|
|
|
{
|
|
|
|
int bin_n = 16;
|
|
|
|
int half_cell = SZ / 2;
|
|
|
|
double eps = 1e-7;
|
|
|
|
|
|
|
|
hog = Mat(Size(4 * bin_n, (int)digits.size()), CV_32F);
|
|
|
|
|
|
|
|
for (size_t img_index = 0; img_index < digits.size(); img_index++)
|
|
|
|
{
|
|
|
|
Mat gx;
|
|
|
|
Sobel(digits[img_index], gx, CV_32F, 1, 0);
|
|
|
|
|
|
|
|
Mat gy;
|
|
|
|
Sobel(digits[img_index], gy, CV_32F, 0, 1);
|
|
|
|
|
|
|
|
Mat mag;
|
|
|
|
Mat ang;
|
|
|
|
cartToPolar(gx, gy, mag, ang);
|
|
|
|
|
|
|
|
Mat bin(ang.size(), CV_32S);
|
|
|
|
|
|
|
|
for (int i = 0; i < ang.rows; i++)
|
|
|
|
{
|
|
|
|
for (int j = 0; j < ang.cols; j++)
|
|
|
|
{
|
|
|
|
bin.at<int>(i, j) = (int)(bin_n * ang.at<float>(i, j) / (2 * CV_PI));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat bin_cells[] = {
|
|
|
|
bin(Rect(0, 0, half_cell, half_cell)),
|
|
|
|
bin(Rect(half_cell, 0, half_cell, half_cell)),
|
|
|
|
bin(Rect(0, half_cell, half_cell, half_cell)),
|
|
|
|
bin(Rect(half_cell, half_cell, half_cell, half_cell))
|
|
|
|
};
|
|
|
|
Mat mag_cells[] = {
|
|
|
|
mag(Rect(0, 0, half_cell, half_cell)),
|
|
|
|
mag(Rect(half_cell, 0, half_cell, half_cell)),
|
|
|
|
mag(Rect(0, half_cell, half_cell, half_cell)),
|
|
|
|
mag(Rect(half_cell, half_cell, half_cell, half_cell))
|
|
|
|
};
|
|
|
|
|
|
|
|
vector<double> hist;
|
|
|
|
hist.reserve(4 * bin_n);
|
|
|
|
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
|
|
{
|
|
|
|
vector<double> partial_hist;
|
|
|
|
bincount(bin_cells[i], mag_cells[i], bin_n, partial_hist);
|
|
|
|
hist.insert(hist.end(), partial_hist.begin(), partial_hist.end());
|
|
|
|
}
|
|
|
|
|
|
|
|
// transform to Hellinger kernel
|
|
|
|
double sum = 0;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < hist.size(); i++)
|
|
|
|
{
|
|
|
|
sum += hist[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
for (size_t i = 0; i < hist.size(); i++)
|
|
|
|
{
|
|
|
|
hist[i] /= sum + eps;
|
|
|
|
hist[i] = sqrt(hist[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
double hist_norm = norm(hist);
|
|
|
|
|
|
|
|
for (size_t i = 0; i < hist.size(); i++)
|
|
|
|
{
|
|
|
|
hog.at<float>((int)img_index, (int)i) = (float)(hist[i] / (hist_norm + eps));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void shuffle(vector<Mat>& digits, vector<int>& labels)
|
|
|
|
{
|
|
|
|
vector<int> shuffled_indexes(digits.size());
|
|
|
|
|
|
|
|
for (size_t i = 0; i < digits.size(); i++)
|
|
|
|
{
|
|
|
|
shuffled_indexes[i] = (int)i;
|
|
|
|
}
|
|
|
|
|
|
|
|
randShuffle(shuffled_indexes);
|
|
|
|
|
|
|
|
vector<Mat> shuffled_digits(digits.size());
|
|
|
|
vector<int> shuffled_labels(labels.size());
|
|
|
|
|
|
|
|
for (size_t i = 0; i < shuffled_indexes.size(); i++)
|
|
|
|
{
|
|
|
|
shuffled_digits[shuffled_indexes[i]] = digits[i];
|
|
|
|
shuffled_labels[shuffled_indexes[i]] = labels[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
digits = shuffled_digits;
|
|
|
|
labels = shuffled_labels;
|
|
|
|
}
|
|
|
|
|
|
|
|
int main(int /* argc */, char* argv[])
|
|
|
|
{
|
|
|
|
help(argv);
|
|
|
|
|
|
|
|
vector<Mat> digits;
|
|
|
|
vector<int> labels;
|
|
|
|
|
|
|
|
load_digits(DIGITS_FN, digits, labels);
|
|
|
|
|
|
|
|
cout << "preprocessing..." << endl;
|
|
|
|
|
|
|
|
// shuffle digits
|
|
|
|
shuffle(digits, labels);
|
|
|
|
|
|
|
|
vector<Mat> digits2;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < digits.size(); i++)
|
|
|
|
{
|
|
|
|
Mat deskewed_digit;
|
|
|
|
deskew(digits[i], deskewed_digit);
|
|
|
|
digits2.push_back(deskewed_digit);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat samples;
|
|
|
|
|
|
|
|
preprocess_hog(digits2, samples);
|
|
|
|
|
|
|
|
int train_n = (int)(0.9 * samples.rows);
|
|
|
|
Mat test_set;
|
|
|
|
|
|
|
|
vector<Mat> digits_test(digits2.begin() + train_n, digits2.end());
|
|
|
|
mosaic(25, digits_test, test_set);
|
|
|
|
imshow("test set", test_set);
|
|
|
|
|
|
|
|
Mat samples_train = samples(Rect(0, 0, samples.cols, train_n));
|
|
|
|
Mat samples_test = samples(Rect(0, train_n, samples.cols, samples.rows - train_n));
|
|
|
|
vector<int> labels_train(labels.begin(), labels.begin() + train_n);
|
|
|
|
vector<int> labels_test(labels.begin() + train_n, labels.end());
|
|
|
|
|
|
|
|
Ptr<ml::KNearest> k_nearest;
|
|
|
|
Ptr<ml::SVM> svm;
|
|
|
|
vector<float> predictions;
|
|
|
|
Mat vis;
|
|
|
|
|
|
|
|
cout << "training KNearest..." << endl;
|
|
|
|
k_nearest = ml::KNearest::create();
|
|
|
|
k_nearest->train(samples_train, ml::ROW_SAMPLE, labels_train);
|
|
|
|
|
|
|
|
// predict digits with KNearest
|
|
|
|
k_nearest->findNearest(samples_test, 4, predictions);
|
|
|
|
evaluate_model(predictions, digits_test, labels_test, vis);
|
|
|
|
imshow("KNearest test", vis);
|
|
|
|
k_nearest.release();
|
|
|
|
|
|
|
|
cout << "training SVM..." << endl;
|
|
|
|
svm = ml::SVM::create();
|
|
|
|
svm->setGamma(5.383);
|
|
|
|
svm->setC(2.67);
|
|
|
|
svm->setKernel(ml::SVM::RBF);
|
|
|
|
svm->setType(ml::SVM::C_SVC);
|
|
|
|
svm->train(samples_train, ml::ROW_SAMPLE, labels_train);
|
|
|
|
|
|
|
|
// predict digits with SVM
|
|
|
|
svm->predict(samples_test, predictions);
|
|
|
|
evaluate_model(predictions, digits_test, labels_test, vis);
|
|
|
|
imshow("SVM test", vis);
|
|
|
|
cout << "Saving SVM as \"digits_svm.yml\"..." << endl;
|
|
|
|
svm->save("digits_svm.yml");
|
|
|
|
svm.release();
|
|
|
|
|
|
|
|
waitKey();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|