|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
|
|
|
|
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#include "npy_blob.hpp"
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
|
|
|
|
template<typename TString>
|
|
|
|
static std::string _tf(TString filename, bool required = true)
|
|
|
|
{
|
|
|
|
return findDataFile(std::string("dnn/onnx/") + filename, required);
|
|
|
|
}
|
|
|
|
|
|
|
|
class Test_ONNX_layers : public DNNTestLayer
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
bool required;
|
|
|
|
|
|
|
|
Test_ONNX_layers() : required(true) { }
|
|
|
|
|
|
|
|
enum Extension
|
|
|
|
{
|
|
|
|
npy,
|
|
|
|
pb
|
|
|
|
};
|
|
|
|
|
|
|
|
void testONNXModels(const String& basename, const Extension ext = npy,
|
|
|
|
const double l1 = 0, const float lInf = 0, const bool useSoftmax = false,
|
|
|
|
bool checkNoFallbacks = true, int numInps = 1)
|
|
|
|
{
|
|
|
|
String onnxmodel = _tf("models/" + basename + ".onnx", required);
|
|
|
|
std::vector<Mat> inps(numInps);
|
|
|
|
Mat ref;
|
|
|
|
if (ext == npy) {
|
|
|
|
for (int i = 0; i < numInps; ++i)
|
|
|
|
inps[i] = blobFromNPY(_tf("data/input_" + basename + (numInps > 1 ? format("_%d", i) : "") + ".npy"));
|
|
|
|
ref = blobFromNPY(_tf("data/output_" + basename + ".npy"));
|
|
|
|
}
|
|
|
|
else if (ext == pb) {
|
|
|
|
for (int i = 0; i < numInps; ++i)
|
|
|
|
inps[i] = readTensorFromONNX(_tf("data/input_" + basename + (numInps > 1 ? format("_%d", i) : "") + ".pb"));
|
|
|
|
ref = readTensorFromONNX(_tf("data/output_" + basename + ".pb"));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
CV_Error(Error::StsUnsupportedFormat, "Unsupported extension");
|
|
|
|
|
|
|
|
checkBackend(&inps[0], &ref);
|
|
|
|
Net net = readNetFromONNX(onnxmodel);
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
|
|
|
|
std::vector<String> inputNames;
|
|
|
|
for (int i = 0; i < numInps; ++i)
|
|
|
|
inputNames.push_back(format("%d", i));
|
|
|
|
net.setInputsNames(inputNames);
|
|
|
|
|
|
|
|
for (int i = 0; i < numInps; ++i)
|
|
|
|
net.setInput(inps[i], inputNames[i]);
|
|
|
|
Mat out = net.forward("");
|
|
|
|
|
|
|
|
if (useSoftmax)
|
|
|
|
{
|
|
|
|
LayerParams lp;
|
|
|
|
Net netSoftmax;
|
|
|
|
netSoftmax.addLayerToPrev("softmaxLayer", "Softmax", lp);
|
|
|
|
netSoftmax.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
|
|
|
|
|
|
netSoftmax.setInput(out);
|
|
|
|
out = netSoftmax.forward();
|
|
|
|
|
|
|
|
netSoftmax.setInput(ref);
|
|
|
|
ref = netSoftmax.forward();
|
|
|
|
}
|
|
|
|
normAssert(ref, out, "", l1 ? l1 : default_l1, lInf ? lInf : default_lInf);
|
|
|
|
if (checkNoFallbacks)
|
|
|
|
expectNoFallbacksFromIE(net);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, InstanceNorm)
|
|
|
|
{
|
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
5 years ago
|
|
|
if(backend == DNN_BACKEND_CUDA)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); /* MVN is not supported */
|
|
|
|
|
|
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
|
|
testONNXModels("instancenorm", npy, 0, 0, false, false);
|
|
|
|
else
|
|
|
|
testONNXModels("instancenorm", npy);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, MaxPooling)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
testONNXModels("maxpooling", npy, 0, 0, false, false);
|
|
|
|
}
|
|
|
|
TEST_P(Test_ONNX_layers, MaxPooling_2)
|
|
|
|
{
|
|
|
|
testONNXModels("two_maxpooling", npy, 0, 0, false, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Convolution)
|
|
|
|
{
|
|
|
|
testONNXModels("convolution");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Convolution_variable_weight)
|
|
|
|
{
|
|
|
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ||
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) && target == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
|
|
|
|
if (backend == DNN_BACKEND_CUDA)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); // not supported
|
|
|
|
|
|
|
|
String basename = "conv_variable_w";
|
|
|
|
Net net = readNetFromONNX(_tf("models/" + basename + ".onnx"));
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
|
|
|
|
for (int i = 0; i < 2; i++)
|
|
|
|
{
|
|
|
|
Mat input = blobFromNPY(_tf("data/input_" + basename + format("_%d", i) + "_0.npy"));
|
|
|
|
Mat weights = blobFromNPY(_tf("data/input_" + basename + format("_%d", i) + "_1.npy"));
|
|
|
|
Mat ref = blobFromNPY(_tf("data/output_" + basename + format("_%d", i) + ".npy"));
|
|
|
|
|
|
|
|
net.setInput(input, "0");
|
|
|
|
net.setInput(weights, "1");
|
|
|
|
|
|
|
|
Mat out = net.forward();
|
|
|
|
normAssert(ref, out, "", default_l1, default_lInf);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Convolution_variable_weight_bias)
|
|
|
|
{
|
|
|
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ||
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) && target == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
|
|
|
|
if (backend == DNN_BACKEND_CUDA)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); // not supported
|
|
|
|
|
|
|
|
String basename = "conv_variable_wb";
|
|
|
|
Net net = readNetFromONNX(_tf("models/" + basename + ".onnx"));
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
|
|
|
|
for (int i = 0; i < 2; i++)
|
|
|
|
{
|
|
|
|
Mat input = blobFromNPY(_tf("data/input_" + basename + format("_%d", i) + "_0.npy"));
|
|
|
|
Mat weights = blobFromNPY(_tf("data/input_" + basename + format("_%d", i) + "_1.npy"));
|
|
|
|
Mat bias = blobFromNPY(_tf("data/input_" + basename + format("_%d", i) + "_2.npy"));
|
|
|
|
Mat ref = blobFromNPY(_tf("data/output_" + basename + format("_%d", i) + ".npy"));
|
|
|
|
|
|
|
|
net.setInput(input, "0");
|
|
|
|
net.setInput(weights, "1");
|
|
|
|
net.setInput(bias, "bias");
|
|
|
|
|
|
|
|
Mat out = net.forward();
|
|
|
|
normAssert(ref, out, "", default_l1, default_lInf);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Gather)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
testONNXModels("gather");
|
|
|
|
// GPU plugin unsupported slice for constant
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
testONNXModels("gather_scalar", npy, 0, 0, false, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Convolution3D)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
testONNXModels("conv3d");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Convolution3D_bias)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
testONNXModels("conv3d_bias");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Two_convolution)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
|
|
|
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
|
|
|
|
)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
#endif
|
|
|
|
// Reference output values are in range [-0.855, 0.611]
|
|
|
|
testONNXModels("two_convolution");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Deconvolution)
|
|
|
|
{
|
|
|
|
testONNXModels("deconvolution", npy, 0, 0, false, false);
|
|
|
|
testONNXModels("two_deconvolution", npy, 0, 0, false, false);
|
|
|
|
testONNXModels("deconvolution_group", npy, 0, 0, false, false);
|
|
|
|
testONNXModels("deconvolution_output_shape", npy, 0, 0, false, false);
|
|
|
|
if (target != DNN_TARGET_CUDA_FP16) // bug
|
|
|
|
testONNXModels("deconv_adjpad_2d", npy, 0, 0, false, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Deconvolution3D)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
if (backend == DNN_BACKEND_CUDA)
|
|
|
|
{
|
|
|
|
// ok
|
|
|
|
}
|
|
|
|
else if (backend == DNN_BACKEND_OPENCV || target != DNN_TARGET_CPU)
|
|
|
|
throw SkipTestException("Only DLIE backend on CPU is supported");
|
|
|
|
testONNXModels("deconv3d");
|
|
|
|
testONNXModels("deconv3d_bias");
|
|
|
|
testONNXModels("deconv3d_pad");
|
|
|
|
testONNXModels("deconv3d_adjpad");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Dropout)
|
|
|
|
{
|
|
|
|
testONNXModels("dropout");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Linear)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
|
|
testONNXModels("linear");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, ReLU)
|
|
|
|
{
|
|
|
|
testONNXModels("ReLU");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Clip)
|
|
|
|
{
|
|
|
|
testONNXModels("clip", npy);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Shape)
|
|
|
|
{
|
|
|
|
testONNXModels("shape_of_constant");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, ReduceMean)
|
|
|
|
{
|
|
|
|
testONNXModels("reduce_mean");
|
|
|
|
testONNXModels("reduce_mean_axis1");
|
|
|
|
testONNXModels("reduce_mean_axis2");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, ReduceSum)
|
|
|
|
{
|
|
|
|
testONNXModels("reduce_sum");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, ReduceMax)
|
|
|
|
{
|
|
|
|
testONNXModels("reduce_max");
|
|
|
|
testONNXModels("reduce_max_axis_0");
|
|
|
|
testONNXModels("reduce_max_axis_1");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Scale)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
testONNXModels("scale");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, ReduceMean3D)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_CUDA)
|
|
|
|
{
|
|
|
|
// ok
|
|
|
|
}
|
|
|
|
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported
|
|
|
|
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported
|
|
|
|
else if (target != DNN_TARGET_CPU)
|
|
|
|
throw SkipTestException("Only CPU is supported");
|
|
|
|
|
|
|
|
testONNXModels("reduce_mean3d");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, MaxPooling_Sigmoid)
|
|
|
|
{
|
|
|
|
testONNXModels("maxpooling_sigmoid");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Cast)
|
|
|
|
{
|
|
|
|
testONNXModels("cast");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Power)
|
|
|
|
{
|
|
|
|
testONNXModels("pow2", npy, 0, 0, false, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Concatenation)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
}
|
|
|
|
testONNXModels("concatenation");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Eltwise3D)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported
|
|
|
|
testONNXModels("eltwise3d");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, AveragePooling)
|
|
|
|
{
|
|
|
|
testONNXModels("average_pooling");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, MaxPooling3D)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
if (backend == DNN_BACKEND_CUDA)
|
|
|
|
{
|
|
|
|
// ok
|
|
|
|
}
|
|
|
|
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported
|
|
|
|
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported
|
|
|
|
else if (target != DNN_TARGET_CPU)
|
|
|
|
throw SkipTestException("Only CPU is supported");
|
|
|
|
testONNXModels("max_pool3d", npy, 0, 0, false, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, AvePooling3D)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
if (backend == DNN_BACKEND_CUDA)
|
|
|
|
{
|
|
|
|
// ok
|
|
|
|
}
|
|
|
|
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported
|
|
|
|
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported
|
|
|
|
else if (target != DNN_TARGET_CPU)
|
|
|
|
throw SkipTestException("Only CPU is supported");
|
|
|
|
testONNXModels("ave_pool3d");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, PoolConv3D)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
if (backend == DNN_BACKEND_CUDA)
|
|
|
|
{
|
|
|
|
// ok
|
|
|
|
}
|
|
|
|
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported
|
|
|
|
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported
|
|
|
|
else if (target != DNN_TARGET_CPU)
|
|
|
|
throw SkipTestException("Only CPU is supported");
|
|
|
|
testONNXModels("pool_conv_3d");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, BatchNormalization)
|
|
|
|
{
|
|
|
|
testONNXModels("batch_norm");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, BatchNormalization3D)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
}
|
|
|
|
testONNXModels("batch_norm_3d");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, BatchNormalizationUnfused)
|
|
|
|
{
|
|
|
|
testONNXModels("frozenBatchNorm2d");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, BatchNormalizationSubgraph)
|
|
|
|
{
|
|
|
|
testONNXModels("batch_norm_subgraph");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Transpose)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
}
|
|
|
|
testONNXModels("transpose");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Multiplication)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
testONNXModels("mul");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, MatMul)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
if (backend == DNN_BACKEND_CUDA)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); // not supported
|
|
|
|
|
|
|
|
testONNXModels("matmul_2d");
|
|
|
|
testONNXModels("matmul_3d");
|
|
|
|
testONNXModels("matmul_4d");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, MatMulAdd)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
|
|
testONNXModels("matmul_add");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Expand)
|
|
|
|
{
|
|
|
|
testONNXModels("expand_batch");
|
|
|
|
testONNXModels("expand_channels");
|
|
|
|
testONNXModels("expand_neg_batch");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, ExpandHW)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
testONNXModels("expand_hw");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Constant)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
|
|
|
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
testONNXModels("constant");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Padding)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
|
|
|
|
testONNXModels("padding", npy, 0, 0, false, false);
|
|
|
|
#else
|
|
|
|
testONNXModels("padding");
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Resize)
|
|
|
|
{
|
|
|
|
testONNXModels("resize_nearest");
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
testONNXModels("resize_bilinear");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, ResizeUnfused)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
testONNXModels("upsample_unfused_torch1.2");
|
|
|
|
testONNXModels("upsample_unfused_opset9_torch1.4");
|
|
|
|
testONNXModels("resize_nearest_unfused_opset11_torch1.4");
|
|
|
|
testONNXModels("resize_nearest_unfused_opset11_torch1.3");
|
|
|
|
testONNXModels("resize_bilinear_unfused_opset11_torch1.4");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, ResizeUnfusedTwoInputs)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
testONNXModels("upsample_unfused_two_inputs_opset9_torch1.4", npy, 0, 0, false, true, 2);
|
|
|
|
testONNXModels("upsample_unfused_two_inputs_opset11_torch1.4", npy, 0, 0, false, true, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, MultyInputs)
|
|
|
|
{
|
|
|
|
testONNXModels("multy_inputs", npy, 0, 0, false, true, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Broadcast)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
testONNXModels("channel_broadcast", npy, 0, 0, false, true, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, DynamicResize)
|
|
|
|
{
|
|
|
|
testONNXModels("dynamic_resize_9", npy, 0, 0, false, true, 2);
|
|
|
|
testONNXModels("dynamic_resize_10", npy, 0, 0, false, true, 2);
|
|
|
|
testONNXModels("dynamic_resize_11", npy, 0, 0, false, true, 2);
|
|
|
|
testONNXModels("dynamic_resize_scale_9", npy, 0, 0, false, true, 2);
|
|
|
|
testONNXModels("dynamic_resize_scale_10", npy, 0, 0, false, true, 2);
|
|
|
|
testONNXModels("dynamic_resize_scale_11", npy, 0, 0, false, true, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Div)
|
|
|
|
{
|
|
|
|
const String model = _tf("models/div.onnx");
|
|
|
|
Net net = readNetFromONNX(model);
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
|
|
|
|
// Reference output values range is -68.80928, 2.991873. So to avoid computational
|
|
|
|
// difference for FP16 we'll perform reversed division (just swap inputs).
|
|
|
|
Mat inp1 = blobFromNPY(_tf("data/input_div_1.npy"));
|
|
|
|
Mat inp2 = blobFromNPY(_tf("data/input_div_0.npy"));
|
|
|
|
Mat ref = blobFromNPY(_tf("data/output_div.npy"));
|
|
|
|
cv::divide(1.0, ref, ref);
|
|
|
|
checkBackend(&inp1, &ref);
|
|
|
|
|
|
|
|
net.setInput(inp1, "0");
|
|
|
|
net.setInput(inp2, "1");
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
normAssert(ref, out, "", default_l1, default_lInf);
|
|
|
|
expectNoFallbacksFromIE(net);
|
|
|
|
expectNoFallbacksFromCUDA(net);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, DynamicReshape)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
|
|
|
|
testONNXModels("dynamic_reshape");
|
|
|
|
testONNXModels("dynamic_reshape_opset_11");
|
|
|
|
testONNXModels("flatten_by_prod");
|
|
|
|
testONNXModels("flatten_const");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Reshape)
|
|
|
|
{
|
|
|
|
testONNXModels("unsqueeze");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Squeeze)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
testONNXModels("squeeze");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, ReduceL2)
|
|
|
|
{
|
|
|
|
testONNXModels("reduceL2");
|
|
|
|
testONNXModels("reduceL2_subgraph");
|
|
|
|
testONNXModels("reduceL2_subgraph_2");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Split)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
testONNXModels("split_1");
|
|
|
|
testONNXModels("split_2");
|
|
|
|
testONNXModels("split_3");
|
|
|
|
testONNXModels("split_4");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Slice)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
|
|
|
|
testONNXModels("slice", npy, 0, 0, false, false);
|
|
|
|
#else
|
|
|
|
testONNXModels("slice");
|
|
|
|
testONNXModels("slice_opset_11");
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Softmax)
|
|
|
|
{
|
|
|
|
testONNXModels("softmax");
|
|
|
|
testONNXModels("log_softmax", npy, 0, 0, false, false);
|
|
|
|
testONNXModels("softmax_unfused");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Split_EltwiseMax)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
testONNXModels("split_max");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, LSTM)
|
|
|
|
{
|
|
|
|
testONNXModels("lstm", npy, 0, 0, false, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, LSTM_bidirectional)
|
|
|
|
{
|
|
|
|
testONNXModels("lstm_bidirectional", npy, 0, 0, false, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Pad2d_Unfused)
|
|
|
|
{
|
|
|
|
testONNXModels("ReflectionPad2d");
|
|
|
|
testONNXModels("ZeroPad2d");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, LinearWithConstant)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2020040000)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE);
|
|
|
|
#endif
|
|
|
|
if (backend == DNN_BACKEND_CUDA)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);
|
|
|
|
testONNXModels("lin_with_constant");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, MatmulWithTwoInputs)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2020040000)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE);
|
|
|
|
#endif
|
|
|
|
if (backend == DNN_BACKEND_CUDA)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);
|
|
|
|
testONNXModels("matmul_with_two_inputs");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, ResizeOpset11_Torch1_6)
|
|
|
|
{
|
|
|
|
testONNXModels("resize_opset11_torch1.6");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Conv1d)
|
|
|
|
{
|
|
|
|
testONNXModels("conv1d");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Conv1d_bias)
|
|
|
|
{
|
|
|
|
testONNXModels("conv1d_bias");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Conv1d_variable_weight)
|
|
|
|
{
|
|
|
|
String basename = "conv1d_variable_w";
|
|
|
|
Net net = readNetFromONNX(_tf("models/" + basename + ".onnx"));
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
|
|
|
|
Mat input = blobFromNPY(_tf("data/input_" + basename + "_0.npy"));
|
|
|
|
Mat weights = blobFromNPY(_tf("data/input_" + basename + "_1.npy"));
|
|
|
|
Mat ref = blobFromNPY(_tf("data/output_" + basename + ".npy"));
|
|
|
|
|
|
|
|
net.setInput(input, "0");
|
|
|
|
net.setInput(weights, "1");
|
|
|
|
|
|
|
|
Mat out = net.forward();
|
|
|
|
normAssert(ref, out, "", default_l1, default_lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, Conv1d_variable_weight_bias)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
}
|
|
|
|
String basename = "conv1d_variable_wb";
|
|
|
|
Net net = readNetFromONNX(_tf("models/" + basename + ".onnx"));
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
|
|
|
|
Mat input = blobFromNPY(_tf("data/input_" + basename + "_0.npy"));
|
|
|
|
Mat weights = blobFromNPY(_tf("data/input_" + basename + "_1.npy"));
|
|
|
|
Mat bias = blobFromNPY(_tf("data/input_" + basename + "_2.npy"));
|
|
|
|
Mat ref = blobFromNPY(_tf("data/output_" + basename + ".npy"));
|
|
|
|
|
|
|
|
net.setInput(input, "0");
|
|
|
|
net.setInput(weights, "1");
|
|
|
|
net.setInput(bias, "bias");
|
|
|
|
|
|
|
|
Mat out = net.forward();
|
|
|
|
normAssert(ref, out, "", default_l1, default_lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, GatherMultiOutput)
|
|
|
|
{
|
|
|
|
if (cvtest::skipUnstableTests && backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
throw SkipTestException("Skip unstable test: https://github.com/opencv/opencv/issues/18937");
|
|
|
|
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
testONNXModels("gather_multi_output");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, DynamicAxes)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
}
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
}
|
|
|
|
testONNXModels("squeeze_and_conv_dynamic_axes");
|
|
|
|
testONNXModels("unsqueeze_and_conv_dynamic_axes");
|
|
|
|
testONNXModels("gather_dynamic_axes");
|
|
|
|
testONNXModels("gather_scalar_dynamic_axes");
|
|
|
|
testONNXModels("slice_dynamic_axes");
|
|
|
|
testONNXModels("slice_opset_11_dynamic_axes");
|
|
|
|
testONNXModels("resize_opset11_torch1.6_dynamic_axes");
|
|
|
|
testONNXModels("average_pooling_dynamic_axes");
|
|
|
|
testONNXModels("maxpooling_sigmoid_dynamic_axes");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, MaxPool1d)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
}
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
}
|
|
|
|
testONNXModels("maxpooling_1d");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, MaxPoolSigmoid1d)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
}
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
}
|
|
|
|
testONNXModels("maxpooling_sigmoid_1d");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, MaxPool1d_Twise)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
}
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
}
|
|
|
|
testONNXModels("two_maxpooling_1d");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, AvePool1d)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
}
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
}
|
|
|
|
testONNXModels("average_pooling_1d");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, PoolConv1d)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
}
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
}
|
|
|
|
testONNXModels("pool_conv_1d");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_layers, ConvResizePool1d)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
}
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
}
|
|
|
|
testONNXModels("conv_resize_pool_1d");
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_ONNX_layers, dnnBackendsAndTargets());
|
|
|
|
|
|
|
|
class Test_ONNX_nets : public Test_ONNX_layers
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
Test_ONNX_nets() { required = false; }
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_nets, Alexnet)
|
|
|
|
{
|
|
|
|
#if defined(OPENCV_32BIT_CONFIGURATION) && (defined(HAVE_OPENCL) || defined(_WIN32))
|
|
|
|
applyTestTag(CV_TEST_TAG_MEMORY_2GB);
|
|
|
|
#else
|
|
|
|
applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
const String model = _tf("models/alexnet.onnx", false);
|
|
|
|
|
|
|
|
Net net = readNetFromONNX(model);
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
|
|
|
|
Mat inp = imread(_tf("../grace_hopper_227.png"));
|
|
|
|
Mat ref = blobFromNPY(_tf("../caffe_alexnet_prob.npy"));
|
|
|
|
checkBackend(&inp, &ref);
|
|
|
|
|
|
|
|
net.setInput(blobFromImage(inp, 1.0f, Size(227, 227), Scalar(), false));
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
normAssert(out, ref, "", default_l1, default_lInf);
|
|
|
|
expectNoFallbacksFromIE(net);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_nets, Squeezenet)
|
|
|
|
{
|
|
|
|
testONNXModels("squeezenet", pb);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_nets, Googlenet)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
|
|
|
|
const String model = _tf("models/googlenet.onnx", false);
|
|
|
|
|
|
|
|
Net net = readNetFromONNX(model);
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
|
|
|
|
std::vector<Mat> images;
|
|
|
|
images.push_back( imread(_tf("../googlenet_0.png")) );
|
|
|
|
images.push_back( imread(_tf("../googlenet_1.png")) );
|
|
|
|
Mat inp = blobFromImages(images, 1.0f, Size(), Scalar(), false);
|
|
|
|
Mat ref = blobFromNPY(_tf("../googlenet_prob.npy"));
|
|
|
|
checkBackend(&inp, &ref);
|
|
|
|
|
|
|
|
net.setInput(inp);
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
normAssert(ref, out, "", default_l1, default_lInf);
|
|
|
|
expectNoFallbacksFromIE(net);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_nets, CaffeNet)
|
|
|
|
{
|
|
|
|
#if defined(OPENCV_32BIT_CONFIGURATION) && (defined(HAVE_OPENCL) || defined(_WIN32))
|
|
|
|
applyTestTag(CV_TEST_TAG_MEMORY_2GB);
|
|
|
|
#else
|
|
|
|
applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019030000)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
|
|
|
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
testONNXModels("caffenet", pb);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_nets, RCNN_ILSVRC13)
|
|
|
|
{
|
|
|
|
#if defined(OPENCV_32BIT_CONFIGURATION) && (defined(HAVE_OPENCL) || defined(_WIN32))
|
|
|
|
applyTestTag(CV_TEST_TAG_MEMORY_2GB);
|
|
|
|
#else
|
|
|
|
applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019030000)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
|
|
|
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
// Reference output values are in range [-4.992, -1.161]
|
|
|
|
testONNXModels("rcnn_ilsvrc13", pb, 0.0046);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_nets, VGG16_bn)
|
|
|
|
{
|
|
|
|
applyTestTag(CV_TEST_TAG_MEMORY_6GB); // > 2.3Gb
|
|
|
|
|
|
|
|
// output range: [-16; 27], after Softmax [0; 0.67]
|
|
|
|
const double lInf = (target == DNN_TARGET_MYRIAD) ? 0.038 : default_lInf;
|
|
|
|
testONNXModels("vgg16-bn", pb, default_l1, lInf, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_nets, ZFNet)
|
|
|
|
{
|
|
|
|
applyTestTag(CV_TEST_TAG_MEMORY_2GB);
|
|
|
|
testONNXModels("zfnet512", pb);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_nets, ResNet18v1)
|
|
|
|
{
|
|
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
|
|
|
|
|
|
|
|
// output range: [-16; 22], after Softmax [0, 0.51]
|
|
|
|
testONNXModels("resnet18v1", pb, default_l1, default_lInf, true, target != DNN_TARGET_MYRIAD);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_nets, ResNet50v1)
|
|
|
|
{
|
|
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
|
|
|
|
|
|
|
|
// output range: [-67; 75], after Softmax [0, 0.98]
|
|
|
|
testONNXModels("resnet50v1", pb, default_l1, default_lInf, true, target != DNN_TARGET_MYRIAD);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_nets, ResNet101_DUC_HDC)
|
|
|
|
{
|
|
|
|
applyTestTag(CV_TEST_TAG_VERYLONG);
|
|
|
|
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
#endif
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_OPENCV)
|
|
|
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_OPENCL : CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
|
|
throw SkipTestException("Test is disabled for OpenCL targets");
|
|
|
|
}
|
|
|
|
testONNXModels("resnet101_duc_hdc", pb);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_nets, TinyYolov2)
|
|
|
|
{
|
|
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
|
|
|
|
|
|
|
|
if (cvtest::skipUnstableTests)
|
|
|
|
throw SkipTestException("Skip unstable test");
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019
|
|
|
|
&& (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
)
|
|
|
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
|
|
|
|
if (target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
|
|
|
|
)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X,
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ?
|
|
|
|
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER :
|
|
|
|
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// output range: [-11; 8]
|
|
|
|
double l1 = default_l1, lInf = default_lInf;
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
|
|
|
|
{
|
|
|
|
l1 = 0.017;
|
|
|
|
lInf = 0.14;
|
|
|
|
}
|
|
|
|
else if (target == DNN_TARGET_CUDA_FP16)
|
|
|
|
{
|
|
|
|
l1 = 0.018;
|
|
|
|
lInf = 0.16;
|
|
|
|
}
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
{
|
|
|
|
l1 = 0.018f; lInf = 0.16f;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
testONNXModels("tiny_yolo2", pb, l1, lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_nets, CNN_MNIST)
|
|
|
|
{
|
|
|
|
// output range: [-1952; 6574], after Softmax [0; 1]
|
|
|
|
testONNXModels("cnn_mnist", pb, default_l1, default_lInf, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_nets, MobileNet_v2)
|
|
|
|
{
|
|
|
|
// output range: [-166; 317], after Softmax [0; 1]
|
|
|
|
testONNXModels("mobilenetv2", pb, default_l1, default_lInf, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_nets, LResNet100E_IR)
|
|
|
|
{
|
|
|
|
applyTestTag(
|
|
|
|
#if defined(OPENCV_32BIT_CONFIGURATION) && defined(HAVE_OPENCL)
|
|
|
|
CV_TEST_TAG_MEMORY_2GB,
|
|
|
|
#else
|
|
|
|
(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB),
|
|
|
|
#endif
|
|
|
|
CV_TEST_TAG_DEBUG_LONG
|
|
|
|
);
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
}
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
}
|
|
|
|
|
|
|
|
double l1 = default_l1, lInf = default_lInf;
|
|
|
|
// output range: [-3; 3]
|
|
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
{
|
|
|
|
l1 = 0.009;
|
|
|
|
lInf = 0.035;
|
|
|
|
}
|
|
|
|
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_CPU)
|
|
|
|
{
|
|
|
|
l1 = 4.6e-5;
|
|
|
|
lInf = 1.9e-4;
|
|
|
|
}
|
|
|
|
else if (target == DNN_TARGET_CUDA_FP16)
|
|
|
|
{
|
|
|
|
l1 = 0.008;
|
|
|
|
lInf = 0.04;
|
|
|
|
}
|
|
|
|
testONNXModels("LResNet100E_IR", pb, l1, lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_nets, Emotion_ferplus)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
if (target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X,
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ?
|
|
|
|
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER :
|
|
|
|
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
double l1 = default_l1;
|
|
|
|
double lInf = default_lInf;
|
|
|
|
|
|
|
|
// Output values are in range [-2.011, 2.111]
|
|
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
l1 = 0.007;
|
|
|
|
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
{
|
|
|
|
l1 = 0.021;
|
|
|
|
lInf = 0.034;
|
|
|
|
}
|
|
|
|
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && (target == DNN_TARGET_CPU || target == DNN_TARGET_OPENCL)) {
|
|
|
|
l1 = 2.4e-4;
|
|
|
|
lInf = 6e-4;
|
|
|
|
}
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
{
|
|
|
|
l1 = 0.012f; lInf = 0.035f;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
testONNXModels("emotion_ferplus", pb, l1, lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_nets, Inception_v2)
|
|
|
|
{
|
|
|
|
testONNXModels("inception_v2", pb, default_l1, default_lInf, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_nets, DenseNet121)
|
|
|
|
{
|
|
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
|
|
|
|
|
|
|
|
// output range: [-87; 138], after Softmax [0; 1]
|
|
|
|
testONNXModels("densenet121", pb, default_l1, default_lInf, true, target != DNN_TARGET_MYRIAD);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_nets, Inception_v1)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
|
|
|
|
#endif
|
|
|
|
testONNXModels("inception_v1", pb);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_nets, Shufflenet)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
}
|
|
|
|
testONNXModels("shufflenet", pb);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_ONNX_nets, Resnet34_kinetics)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
if (backend == DNN_BACKEND_CUDA)
|
|
|
|
{
|
|
|
|
// ok
|
|
|
|
}
|
|
|
|
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported
|
|
|
|
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported
|
|
|
|
else if (target != DNN_TARGET_CPU)
|
|
|
|
throw SkipTestException("Only CPU is supported");
|
|
|
|
|
|
|
|
String onnxmodel = findDataFile("dnn/resnet-34_kinetics.onnx", false);
|
|
|
|
Mat image0 = imread(findDataFile("dnn/dog416.png"));
|
|
|
|
Mat image1 = imread(findDataFile("dnn/street.png"));
|
|
|
|
|
|
|
|
Mat ref0 = blobFromNPY(_tf("data/output_kinetics0.npy"));
|
|
|
|
Mat ref1 = blobFromNPY(_tf("data/output_kinetics1.npy"));
|
|
|
|
|
|
|
|
std::vector<Mat> images_0(16, image0);
|
|
|
|
std::vector<Mat> images_1(16, image1);
|
|
|
|
Mat blob0 = blobFromImages(images_0, 1.0, Size(112, 112), Scalar(114.7748, 107.7354, 99.4750), true, true);
|
|
|
|
Mat blob1 = blobFromImages(images_1, 1.0, Size(112, 112), Scalar(114.7748, 107.7354, 99.4750), true, true);
|
|
|
|
|
|
|
|
Net permute;
|
|
|
|
LayerParams lp;
|
|
|
|
int order[] = {1, 0, 2, 3};
|
|
|
|
lp.set("order", DictValue::arrayInt<int*>(&order[0], 4));
|
|
|
|
permute.addLayerToPrev("perm", "Permute", lp);
|
|
|
|
|
|
|
|
permute.setPreferableBackend(backend);
|
|
|
|
permute.setPreferableTarget(target);
|
|
|
|
|
|
|
|
permute.setInput(blob0);
|
|
|
|
Mat input0 = permute.forward().clone();
|
|
|
|
|
|
|
|
permute.setInput(blob1);
|
|
|
|
Mat input1 = permute.forward().clone();
|
|
|
|
|
|
|
|
int dims[] = {1, 3, 16, 112, 112};
|
|
|
|
input0 = input0.reshape(0, 5, &dims[0]);
|
|
|
|
input1 = input1.reshape(0, 5, &dims[0]);
|
|
|
|
|
|
|
|
Net net = readNetFromONNX(onnxmodel);
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
|
|
|
|
// output range [-5, 11]
|
|
|
|
float l1 = 0.0013, lInf = 0.009;
|
|
|
|
if (target == DNN_TARGET_CUDA_FP16)
|
|
|
|
{
|
|
|
|
l1 = 0.01;
|
|
|
|
lInf = 0.06;
|
|
|
|
}
|
|
|
|
|
|
|
|
checkBackend(&input0, &ref0);
|
|
|
|
net.setInput(input0);
|
|
|
|
Mat out = net.forward().clone();
|
|
|
|
normAssert(ref0, out, "", l1, lInf);
|
|
|
|
|
|
|
|
checkBackend(&input1, &ref1);
|
|
|
|
net.setInput(input1);
|
|
|
|
out = net.forward().clone();
|
|
|
|
normAssert(ref1, out, "", l1, lInf);
|
|
|
|
|
|
|
|
expectNoFallbacksFromIE(net);
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_ONNX_nets, dnnBackendsAndTargets());
|
|
|
|
|
|
|
|
}} // namespace
|