|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
|
|
|
|
#include <string>
|
|
|
|
#include <fstream>
|
|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
|
|
|
|
class CV_GBTreesTest : public cvtest::BaseTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_GBTreesTest();
|
|
|
|
~CV_GBTreesTest();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
void run(int);
|
|
|
|
|
|
|
|
int TestTrainPredict(int test_num);
|
|
|
|
int TestSaveLoad();
|
|
|
|
|
|
|
|
int checkPredictError(int test_num);
|
|
|
|
int checkLoadSave();
|
|
|
|
|
|
|
|
string model_file_name1;
|
|
|
|
string model_file_name2;
|
|
|
|
|
|
|
|
string* datasets;
|
|
|
|
string data_path;
|
|
|
|
|
|
|
|
CvMLData* data;
|
|
|
|
CvGBTrees* gtb;
|
|
|
|
|
|
|
|
vector<float> test_resps1;
|
|
|
|
vector<float> test_resps2;
|
|
|
|
|
|
|
|
int64 initSeed;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
int _get_len(const CvMat* mat)
|
|
|
|
{
|
|
|
|
return (mat->cols > mat->rows) ? mat->cols : mat->rows;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CV_GBTreesTest::CV_GBTreesTest()
|
|
|
|
{
|
|
|
|
int64 seeds[] = { CV_BIG_INT(0x00009fff4f9c8d52),
|
|
|
|
CV_BIG_INT(0x0000a17166072c7c),
|
|
|
|
CV_BIG_INT(0x0201b32115cd1f9a),
|
|
|
|
CV_BIG_INT(0x0513cb37abcd1234),
|
|
|
|
CV_BIG_INT(0x0001a2b3c4d5f678)
|
|
|
|
};
|
|
|
|
|
|
|
|
int seedCount = sizeof(seeds)/sizeof(seeds[0]);
|
|
|
|
cv::RNG& rng = cv::theRNG();
|
|
|
|
initSeed = rng.state;
|
|
|
|
rng.state = seeds[rng(seedCount)];
|
|
|
|
|
|
|
|
datasets = 0;
|
|
|
|
data = 0;
|
|
|
|
gtb = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
CV_GBTreesTest::~CV_GBTreesTest()
|
|
|
|
{
|
|
|
|
if (data)
|
|
|
|
delete data;
|
|
|
|
delete[] datasets;
|
|
|
|
cv::theRNG().state = initSeed;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_GBTreesTest::TestTrainPredict(int test_num)
|
|
|
|
{
|
|
|
|
int code = cvtest::TS::OK;
|
|
|
|
|
|
|
|
int weak_count = 200;
|
|
|
|
float shrinkage = 0.1f;
|
|
|
|
float subsample_portion = 0.5f;
|
|
|
|
int max_depth = 5;
|
|
|
|
bool use_surrogates = false;
|
|
|
|
int loss_function_type = 0;
|
|
|
|
switch (test_num)
|
|
|
|
{
|
|
|
|
case (1) : loss_function_type = CvGBTrees::SQUARED_LOSS; break;
|
|
|
|
case (2) : loss_function_type = CvGBTrees::ABSOLUTE_LOSS; break;
|
|
|
|
case (3) : loss_function_type = CvGBTrees::HUBER_LOSS; break;
|
|
|
|
case (0) : loss_function_type = CvGBTrees::DEVIANCE_LOSS; break;
|
|
|
|
default :
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "Bad test_num value in CV_GBTreesTest::TestTrainPredict(..) function." );
|
|
|
|
return cvtest::TS::FAIL_BAD_ARG_CHECK;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int dataset_num = test_num == 0 ? 0 : 1;
|
|
|
|
if (!data)
|
|
|
|
{
|
|
|
|
data = new CvMLData();
|
|
|
|
data->set_delimiter(',');
|
|
|
|
|
|
|
|
if (data->read_csv(datasets[dataset_num].c_str()))
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "File reading error." );
|
|
|
|
return cvtest::TS::FAIL_INVALID_TEST_DATA;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (test_num == 0)
|
|
|
|
{
|
|
|
|
data->set_response_idx(57);
|
|
|
|
data->set_var_types("ord[0-56],cat[57]");
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
data->set_response_idx(13);
|
|
|
|
data->set_var_types("ord[0-2,4-13],cat[3]");
|
|
|
|
subsample_portion = 0.7f;
|
|
|
|
}
|
|
|
|
|
|
|
|
int train_sample_count = cvFloor(_get_len(data->get_responses())*0.5f);
|
|
|
|
CvTrainTestSplit spl( train_sample_count );
|
|
|
|
data->set_train_test_split( &spl );
|
|
|
|
}
|
|
|
|
|
|
|
|
data->mix_train_and_test_idx();
|
|
|
|
|
|
|
|
|
|
|
|
if (gtb) delete gtb;
|
|
|
|
gtb = new CvGBTrees();
|
|
|
|
bool tmp_code = true;
|
|
|
|
tmp_code = gtb->train(data, CvGBTreesParams(loss_function_type, weak_count,
|
|
|
|
shrinkage, subsample_portion,
|
|
|
|
max_depth, use_surrogates));
|
|
|
|
|
|
|
|
if (!tmp_code)
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "Model training was failed.");
|
|
|
|
return cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
|
|
}
|
|
|
|
|
|
|
|
code = checkPredictError(test_num);
|
|
|
|
|
|
|
|
return code;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_GBTreesTest::checkPredictError(int test_num)
|
|
|
|
{
|
|
|
|
if (!gtb)
|
|
|
|
return cvtest::TS::FAIL_GENERIC;
|
|
|
|
|
|
|
|
//float mean[] = {5.430247f, 13.5654f, 12.6569f, 13.1661f};
|
|
|
|
//float sigma[] = {0.4162694f, 3.21161f, 3.43297f, 3.00624f};
|
|
|
|
float mean[] = {5.80226f, 12.68689f, 13.49095f, 13.19628f};
|
|
|
|
float sigma[] = {0.4764534f, 3.166919f, 3.022405f, 2.868722f};
|
|
|
|
|
|
|
|
float current_error = gtb->calc_error(data, CV_TEST_ERROR);
|
|
|
|
|
|
|
|
if ( abs( current_error - mean[test_num]) > 6*sigma[test_num] )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "Test error is out of range:\n"
|
|
|
|
"abs(%f/*curEr*/ - %f/*mean*/ > %f/*6*sigma*/",
|
|
|
|
current_error, mean[test_num], 6*sigma[test_num] );
|
|
|
|
return cvtest::TS::FAIL_BAD_ACCURACY;
|
|
|
|
}
|
|
|
|
|
|
|
|
return cvtest::TS::OK;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_GBTreesTest::TestSaveLoad()
|
|
|
|
{
|
|
|
|
if (!gtb)
|
|
|
|
return cvtest::TS::FAIL_GENERIC;
|
|
|
|
|
|
|
|
model_file_name1 = cv::tempfile();
|
|
|
|
model_file_name2 = cv::tempfile();
|
|
|
|
|
|
|
|
gtb->save(model_file_name1.c_str());
|
|
|
|
gtb->calc_error(data, CV_TEST_ERROR, &test_resps1);
|
|
|
|
gtb->load(model_file_name1.c_str());
|
|
|
|
gtb->calc_error(data, CV_TEST_ERROR, &test_resps2);
|
|
|
|
gtb->save(model_file_name2.c_str());
|
|
|
|
|
|
|
|
return checkLoadSave();
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int CV_GBTreesTest::checkLoadSave()
|
|
|
|
{
|
|
|
|
int code = cvtest::TS::OK;
|
|
|
|
|
|
|
|
// 1. compare files
|
|
|
|
ifstream f1( model_file_name1.c_str() ), f2( model_file_name2.c_str() );
|
|
|
|
string s1, s2;
|
|
|
|
int lineIdx = 0;
|
|
|
|
CV_Assert( f1.is_open() && f2.is_open() );
|
|
|
|
for( ; !f1.eof() && !f2.eof(); lineIdx++ )
|
|
|
|
{
|
|
|
|
getline( f1, s1 );
|
|
|
|
getline( f2, s2 );
|
|
|
|
if( s1.compare(s2) )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "first and second saved files differ in %n-line; first %n line: %s; second %n-line: %s",
|
|
|
|
lineIdx, lineIdx, s1.c_str(), lineIdx, s2.c_str() );
|
|
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( !f1.eof() || !f2.eof() )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "First and second saved files differ in %n-line; first %n line: %s; second %n-line: %s",
|
|
|
|
lineIdx, lineIdx, s1.c_str(), lineIdx, s2.c_str() );
|
|
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
|
|
}
|
|
|
|
f1.close();
|
|
|
|
f2.close();
|
|
|
|
// delete temporary files
|
|
|
|
remove( model_file_name1.c_str() );
|
|
|
|
remove( model_file_name2.c_str() );
|
|
|
|
|
|
|
|
// 2. compare responses
|
|
|
|
CV_Assert( test_resps1.size() == test_resps2.size() );
|
|
|
|
vector<float>::const_iterator it1 = test_resps1.begin(), it2 = test_resps2.begin();
|
|
|
|
for( ; it1 != test_resps1.end(); ++it1, ++it2 )
|
|
|
|
{
|
|
|
|
if( fabs(*it1 - *it2) > FLT_EPSILON )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "Responses predicted before saving and after loading are different" );
|
|
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void CV_GBTreesTest::run(int)
|
|
|
|
{
|
|
|
|
|
|
|
|
string dataPath = string(ts->get_data_path());
|
|
|
|
datasets = new string[2];
|
|
|
|
datasets[0] = dataPath + string("spambase.data"); /*string("dataset_classification.csv");*/
|
|
|
|
datasets[1] = dataPath + string("housing_.data"); /*string("dataset_regression.csv");*/
|
|
|
|
|
|
|
|
int code = cvtest::TS::OK;
|
|
|
|
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
|
|
{
|
|
|
|
|
|
|
|
int temp_code = TestTrainPredict(i);
|
|
|
|
if (temp_code != cvtest::TS::OK)
|
|
|
|
{
|
|
|
|
code = temp_code;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
else if (i==0)
|
|
|
|
{
|
|
|
|
temp_code = TestSaveLoad();
|
|
|
|
if (temp_code != cvtest::TS::OK)
|
|
|
|
code = temp_code;
|
|
|
|
delete data;
|
|
|
|
data = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
delete gtb;
|
|
|
|
gtb = 0;
|
|
|
|
}
|
|
|
|
delete data;
|
|
|
|
data = 0;
|
|
|
|
|
|
|
|
ts->set_failed_test_info( code );
|
|
|
|
}
|
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
|
|
//////////////////// test registration /////////////////////////////////////
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
TEST(ML_GBTrees, regression) { CV_GBTreesTest test; test.safe_run(); }
|