|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#include <opencv2/core/ocl.hpp>
|
|
|
|
#include "npy_blob.hpp"
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
#include <opencv2/dnn/all_layers.hpp>
|
|
|
|
#include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS
|
|
|
|
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
|
|
#include <thread>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
|
|
|
|
template<typename TString>
|
|
|
|
static String _tf(TString filename)
|
|
|
|
{
|
|
|
|
String basetestdir = getOpenCVExtraDir();
|
|
|
|
size_t len = basetestdir.size();
|
|
|
|
if(len > 0 && basetestdir[len-1] != '/' && basetestdir[len-1] != '\\')
|
|
|
|
return (basetestdir + "/dnn/layers") + filename;
|
|
|
|
return (basetestdir + "dnn/layers/") + filename;
|
|
|
|
}
|
|
|
|
|
|
|
|
void runLayer(Ptr<Layer> layer, std::vector<Mat> &inpBlobs, std::vector<Mat> &outBlobs)
|
|
|
|
{
|
|
|
|
size_t ninputs = inpBlobs.size();
|
|
|
|
std::vector<Mat> inp(ninputs), outp, intp;
|
|
|
|
std::vector<MatShape> inputs, outputs, internals;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < ninputs; i++)
|
|
|
|
{
|
|
|
|
inp[i] = inpBlobs[i].clone();
|
|
|
|
inputs.push_back(shape(inp[i]));
|
|
|
|
}
|
|
|
|
|
|
|
|
layer->getMemoryShapes(inputs, 0, outputs, internals);
|
|
|
|
for (size_t i = 0; i < outputs.size(); i++)
|
|
|
|
{
|
|
|
|
outp.push_back(Mat(outputs[i], CV_32F));
|
|
|
|
}
|
|
|
|
for (size_t i = 0; i < internals.size(); i++)
|
|
|
|
{
|
|
|
|
intp.push_back(Mat(internals[i], CV_32F));
|
|
|
|
}
|
|
|
|
|
|
|
|
layer->finalize(inp, outp);
|
|
|
|
layer->forward(inp, outp, intp);
|
|
|
|
|
|
|
|
size_t noutputs = outp.size();
|
|
|
|
outBlobs.resize(noutputs);
|
|
|
|
for (size_t i = 0; i < noutputs; i++)
|
|
|
|
outBlobs[i] = outp[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
class Test_Caffe_layers : public DNNTestLayer
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
void testLayerUsingCaffeModels(const String& basename, bool useCaffeModel = false,
|
|
|
|
bool useCommonInputBlob = true, double l1 = 0.0, double lInf = 0.0,
|
|
|
|
int numInps = 1, int numOuts = 1)
|
|
|
|
{
|
|
|
|
CV_Assert_N(numInps >= 1, numInps <= 10, numOuts >= 1, numOuts <= 10);
|
|
|
|
String prototxt = _tf(basename + ".prototxt");
|
|
|
|
String caffemodel = _tf(basename + ".caffemodel");
|
|
|
|
|
|
|
|
std::vector<Mat> inps, refs, outs;
|
|
|
|
|
|
|
|
if (numInps > 1)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < numInps; i++)
|
|
|
|
{
|
|
|
|
String inpfile = _tf(basename + ".input_" + (i + '0') + ".npy");
|
|
|
|
inps.push_back(blobFromNPY(inpfile));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
String inpfile = (useCommonInputBlob) ? _tf("blob.npy") : _tf(basename + ".input.npy");
|
|
|
|
inps.push_back(blobFromNPY(inpfile));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (numOuts > 1)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < numOuts; i++)
|
|
|
|
{
|
|
|
|
String outfile = _tf(basename + "_" + (i + '0') + ".npy");
|
|
|
|
refs.push_back(blobFromNPY(outfile));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
String outfile = _tf(basename + ".npy");
|
|
|
|
refs.push_back(blobFromNPY(outfile));
|
|
|
|
}
|
|
|
|
|
|
|
|
Net net = readNetFromCaffe(prototxt, (useCaffeModel) ? caffemodel : String());
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
checkBackend(&inps[0], &refs[0]);
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
7 years ago
|
|
|
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
|
|
|
|
String inp_name = "input";
|
|
|
|
if (numInps > 1)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < numInps; i++)
|
|
|
|
{
|
|
|
|
net.setInput(inps[i], inp_name + "_" + (i + '0'));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
net.setInput(inps.back(), inp_name);
|
|
|
|
}
|
|
|
|
|
|
|
|
net.forward(outs);
|
|
|
|
for (int i = 0; i < refs.size(); i++)
|
|
|
|
{
|
|
|
|
normAssert(refs[i], outs[i], "", l1 ? l1 : default_l1, lInf ? lInf : default_lInf);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, Softmax)
|
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_softmax");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, LRN)
|
|
|
|
{
|
|
|
|
double l1 = 0.0, lInf = 0.0;
|
|
|
|
// The OpenCL kernels use the native_ math functions which have
|
|
|
|
// implementation defined accuracy, so we use relaxed thresholds. See
|
|
|
|
// https://github.com/opencv/opencv/issues/9821 for more details.
|
|
|
|
if (target == DNN_TARGET_OPENCL)
|
|
|
|
{
|
|
|
|
l1 = 0.01;
|
|
|
|
lInf = 0.01;
|
|
|
|
}
|
|
|
|
testLayerUsingCaffeModels("layer_lrn_spatial", false, true, l1, lInf);
|
|
|
|
testLayerUsingCaffeModels("layer_lrn_channels", false, true, l1, lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, Convolution)
|
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_convolution", true);
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
7 years ago
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, DeConvolution)
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
7 years ago
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_deconvolution", true, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, InnerProduct)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
|
|
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
|
|
testLayerUsingCaffeModels("layer_inner_product", true);
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
7 years ago
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, Pooling_max)
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
7 years ago
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_pooling_max");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, Pooling_ave)
|
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_pooling_ave");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, MVN)
|
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_mvn");
|
|
|
|
}
|
|
|
|
|
|
|
|
void testReshape(const MatShape& inputShape, const MatShape& targetShape,
|
|
|
|
int axis = 0, int num_axes = -1,
|
|
|
|
MatShape mask = MatShape())
|
|
|
|
{
|
|
|
|
LayerParams params;
|
|
|
|
params.set("axis", axis);
|
|
|
|
params.set("num_axes", num_axes);
|
|
|
|
if (!mask.empty())
|
|
|
|
{
|
|
|
|
params.set("dim", DictValue::arrayInt<int*>(&mask[0], mask.size()));
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat inp(inputShape.size(), &inputShape[0], CV_32F);
|
|
|
|
std::vector<Mat> inpVec(1, inp);
|
|
|
|
std::vector<Mat> outVec, intVec;
|
|
|
|
|
|
|
|
Ptr<Layer> rl = LayerFactory::createLayerInstance("Reshape", params);
|
|
|
|
runLayer(rl, inpVec, outVec);
|
|
|
|
|
|
|
|
Mat& out = outVec[0];
|
|
|
|
MatShape shape(out.size.p, out.size.p + out.dims);
|
|
|
|
EXPECT_EQ(shape, targetShape);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_Reshape, Accuracy)
|
|
|
|
{
|
|
|
|
{
|
|
|
|
int inp[] = {4, 3, 1, 2};
|
|
|
|
int out[] = {4, 3, 2};
|
|
|
|
testReshape(MatShape(inp, inp + 4), MatShape(out, out + 3), 2, 1);
|
|
|
|
}
|
|
|
|
{
|
|
|
|
int inp[] = {1, 128, 4, 4};
|
|
|
|
int out[] = {1, 2048};
|
|
|
|
int mask[] = {-1, 2048};
|
|
|
|
testReshape(MatShape(inp, inp + 4), MatShape(out, out + 2), 0, -1,
|
|
|
|
MatShape(mask, mask + 2));
|
|
|
|
}
|
|
|
|
{
|
|
|
|
int inp[] = {1, 2, 3};
|
|
|
|
int out[] = {3, 1, 2};
|
|
|
|
int mask[] = {3, 1, 2};
|
|
|
|
testReshape(MatShape(inp, inp + 3), MatShape(out, out + 3), 0, -1,
|
|
|
|
MatShape(mask, mask + 3));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, BatchNorm)
|
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_batch_norm", true);
|
|
|
|
testLayerUsingCaffeModels("layer_batch_norm_local_stats", true, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, ReLU)
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
7 years ago
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_relu");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, Dropout)
|
|
|
|
{
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
7 years ago
|
|
|
testLayerUsingCaffeModels("layer_dropout");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, Concat)
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
7 years ago
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
|
|
#if INF_ENGINE_VER_MAJOR_GE(2019010000) && INF_ENGINE_VER_MAJOR_LT(2019020000)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#elif INF_ENGINE_VER_MAJOR_EQ(2019020000)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 &&
|
|
|
|
(target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
|
|
|
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
|
|
|
|
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH &&
|
|
|
|
(target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
|
|
|
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
|
|
|
|
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
testLayerUsingCaffeModels("layer_concat");
|
|
|
|
testLayerUsingCaffeModels("layer_concat_optim", true, false);
|
|
|
|
testLayerUsingCaffeModels("layer_concat_shared_input", true, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, Fused_Concat)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
|
|
|
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
|
|
|
|
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
|
|
|
|
checkBackend();
|
|
|
|
|
|
|
|
// Test case
|
|
|
|
// input
|
|
|
|
// |
|
|
|
|
// v
|
|
|
|
// some_layer
|
|
|
|
// | |
|
|
|
|
// v v
|
|
|
|
// concat
|
|
|
|
Net net;
|
|
|
|
int interLayer;
|
|
|
|
{
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "AbsVal";
|
|
|
|
lp.name = "someLayer";
|
|
|
|
interLayer = net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
}
|
|
|
|
{
|
|
|
|
LayerParams lp;
|
|
|
|
lp.set("axis", 1);
|
|
|
|
lp.type = "Concat";
|
|
|
|
lp.name = "testConcat";
|
|
|
|
int id = net.addLayer(lp.name, lp.type, lp);
|
|
|
|
net.connect(interLayer, 0, id, 0);
|
|
|
|
net.connect(interLayer, 0, id, 1);
|
|
|
|
}
|
|
|
|
int shape[] = {1, 2, 3, 4};
|
|
|
|
Mat input(4, shape, CV_32F);
|
|
|
|
randu(input, 0.0f, 1.0f); // [0, 1] to make AbsVal an identity transformation.
|
|
|
|
|
|
|
|
net.setInput(input);
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
normAssert(slice(out, Range::all(), Range(0, 2), Range::all(), Range::all()), input, "", default_l1, default_lInf);
|
|
|
|
normAssert(slice(out, Range::all(), Range(2, 4), Range::all(), Range::all()), input, "", default_l1, default_lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, Eltwise)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
|
|
|
|
testLayerUsingCaffeModels("layer_eltwise");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, PReLU)
|
|
|
|
{
|
|
|
|
double lInf = (target == DNN_TARGET_MYRIAD || target == DNN_TARGET_OPENCL_FP16) ? 0.021 : 0.0;
|
|
|
|
testLayerUsingCaffeModels("layer_prelu", true, true, 0.0, lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: fix an unstable test case
|
|
|
|
TEST_P(Test_Caffe_layers, layer_prelu_fc)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
|
|
// Reference output values are in range [-0.0001, 10.3906]
|
|
|
|
double l1 = (target == DNN_TARGET_MYRIAD) ? 0.005 : 0.0;
|
|
|
|
double lInf = (target == DNN_TARGET_MYRIAD) ? 0.021 : 0.0;
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
|
|
|
{
|
|
|
|
l1 = 0.006f; lInf = 0.05f;
|
|
|
|
}
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
{
|
|
|
|
l1 = 0.01f; lInf = 0.05f;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
testLayerUsingCaffeModels("layer_prelu_fc", true, false, l1, lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, Reshape_Split_Slice)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
|
|
|
|
Net net = readNetFromCaffe(_tf("reshape_and_slice_routines.prototxt"));
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
|
|
|
|
Mat input(6, 12, CV_32F);
|
|
|
|
RNG rng(0);
|
|
|
|
rng.fill(input, RNG::UNIFORM, -1, 1);
|
|
|
|
|
|
|
|
net.setInput(input, "input");
|
|
|
|
Mat output = net.forward("output");
|
|
|
|
|
|
|
|
normAssert(input, output, "", default_l1, default_lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, Conv_Elu)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE <= 2018050000
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
Net net = readNetFromTensorflow(_tf("layer_elu_model.pb"));
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
|
|
|
|
Mat inp = blobFromNPY(_tf("layer_elu_in.npy"));
|
|
|
|
Mat ref = blobFromNPY(_tf("layer_elu_out.npy"));
|
|
|
|
|
|
|
|
net.setInput(inp, "input");
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
normAssert(ref, out, "", default_l1, default_lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
class Layer_LSTM_Test : public ::testing::Test
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
int numInp, numOut;
|
|
|
|
Mat Wh, Wx, b, h, c;
|
|
|
|
Ptr<LSTMLayer> layer;
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
|
|
|
|
|
|
Layer_LSTM_Test() {}
|
|
|
|
|
|
|
|
void init(const MatShape &inpShape_, const MatShape &outShape_,
|
|
|
|
bool produceCellOutput, bool useTimestampDim)
|
|
|
|
{
|
|
|
|
numInp = total(inpShape_);
|
|
|
|
numOut = total(outShape_);
|
|
|
|
|
|
|
|
Wh = Mat::ones(4 * numOut, numOut, CV_32F);
|
|
|
|
Wx = Mat::ones(4 * numOut, numInp, CV_32F);
|
|
|
|
b = Mat::ones(4 * numOut, 1, CV_32F);
|
|
|
|
h = Mat::ones(4, numOut, CV_32F);
|
|
|
|
c = Mat::ones(4, numOut, CV_32F);
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.blobs.resize(5);
|
|
|
|
lp.blobs[0] = Wh;
|
|
|
|
lp.blobs[1] = Wx;
|
|
|
|
lp.blobs[2] = b;
|
|
|
|
lp.blobs[3] = h;
|
|
|
|
lp.blobs[4] = c;
|
|
|
|
|
|
|
|
lp.set<bool>("produce_cell_output", produceCellOutput);
|
|
|
|
lp.set<bool>("use_timestamp_dim", useTimestampDim);
|
|
|
|
|
|
|
|
layer = LSTMLayer::create(lp);
|
|
|
|
layer->setOutShape(outShape_);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_F(Layer_LSTM_Test, get_set_test)
|
|
|
|
{
|
|
|
|
const int TN = 4;
|
|
|
|
MatShape inpShape = shape(5, 3, 2);
|
|
|
|
MatShape outShape = shape(3, 1, 2);
|
|
|
|
MatShape inpResShape = concat(shape(TN), inpShape);
|
|
|
|
MatShape outResShape = concat(shape(TN), outShape);
|
|
|
|
|
|
|
|
init(inpShape, outShape, true, false);
|
|
|
|
layer->setOutShape(outShape);
|
|
|
|
|
|
|
|
Mat C((int)outResShape.size(), &outResShape[0], CV_32F);
|
|
|
|
randu(C, -1., 1.);
|
|
|
|
Mat H = C.clone();
|
|
|
|
randu(H, -1., 1.);
|
|
|
|
|
|
|
|
Mat inp((int)inpResShape.size(), &inpResShape[0], CV_32F);
|
|
|
|
randu(inp, -1., 1.);
|
|
|
|
|
|
|
|
inputs.push_back(inp);
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
|
|
|
|
EXPECT_EQ(2u, outputs.size());
|
|
|
|
|
|
|
|
print(outResShape, "outResShape");
|
|
|
|
print(shape(outputs[0]), "out0");
|
|
|
|
print(shape(outputs[0]), "out1");
|
|
|
|
|
|
|
|
EXPECT_EQ(outResShape, shape(outputs[0]));
|
|
|
|
EXPECT_EQ(outResShape, shape(outputs[1]));
|
|
|
|
|
|
|
|
EXPECT_EQ(0, layer->inputNameToIndex("x"));
|
|
|
|
EXPECT_EQ(0, layer->outputNameToIndex("h"));
|
|
|
|
EXPECT_EQ(1, layer->outputNameToIndex("c"));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_LSTM_Test_Accuracy_with_, CaffeRecurrent)
|
|
|
|
{
|
|
|
|
LayerParams lp;
|
|
|
|
lp.blobs.resize(5);
|
|
|
|
lp.blobs[0] = blobFromNPY(_tf("lstm.prototxt.w_2.npy")); // Wh
|
|
|
|
lp.blobs[1] = blobFromNPY(_tf("lstm.prototxt.w_0.npy")); // Wx
|
|
|
|
lp.blobs[2] = blobFromNPY(_tf("lstm.prototxt.w_1.npy")); // bias
|
|
|
|
lp.blobs[3] = Mat::zeros(2, 17, CV_32F); // h_0
|
|
|
|
lp.blobs[4] = Mat::zeros(2, 17, CV_32F); // c_0
|
|
|
|
Ptr<LSTMLayer> layer = LSTMLayer::create(lp);
|
|
|
|
|
|
|
|
Mat inp = blobFromNPY(_tf("recurrent.input.npy"));
|
|
|
|
std::vector<Mat> inputs(1, inp), outputs;
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
|
|
|
|
Mat h_t_reference = blobFromNPY(_tf("lstm.prototxt.h_1.npy"));
|
|
|
|
normAssert(h_t_reference, outputs[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_LSTM_Test_Accuracy_with_, HiddenParams)
|
|
|
|
{
|
|
|
|
Mat Wx = blobFromNPY(_tf("lstm.hidden.W.npy"));
|
|
|
|
Mat Wh = blobFromNPY(_tf("lstm.hidden.R.npy"));
|
|
|
|
Mat b = blobFromNPY(_tf("lstm.hidden.B.npy"));
|
|
|
|
Mat h0 = blobFromNPY(_tf("lstm.hidden.h0.npy"));
|
|
|
|
Mat c0 = blobFromNPY(_tf("lstm.hidden.c0.npy"));
|
|
|
|
|
|
|
|
const int numHidden = 3;
|
|
|
|
const int numDirs = Wx.size[0];
|
|
|
|
const int numFeatures = Wx.size[2];
|
|
|
|
|
|
|
|
b = b.reshape(1, b.size[0]);
|
|
|
|
Mat bx = b.colRange(0, b.cols / 2);
|
|
|
|
Mat bh = b.colRange(b.cols / 2, b.cols);
|
|
|
|
b = bx + bh;
|
|
|
|
|
|
|
|
// IFGO->IGFO
|
|
|
|
for (int k = 0; k < numDirs; ++k)
|
|
|
|
{
|
|
|
|
float* WxData = Wx.ptr<float>(k);
|
|
|
|
float* WhData = Wh.ptr<float>(k);
|
|
|
|
float* biasData = b.ptr<float>(k);
|
|
|
|
for (int j = 0; j < numHidden; ++j)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < numFeatures; ++i)
|
|
|
|
{
|
|
|
|
std::swap(WxData[(numHidden + j) * numFeatures + i],
|
|
|
|
WxData[(numHidden * 2 + j) * numFeatures + i]);
|
|
|
|
}
|
|
|
|
for (int i = 0; i < numHidden; ++i)
|
|
|
|
{
|
|
|
|
std::swap(WhData[(numHidden + j) * numHidden + i],
|
|
|
|
WhData[(numHidden * 2 + j) * numHidden + i]);
|
|
|
|
}
|
|
|
|
std::swap(biasData[numHidden + j], biasData[numHidden * 2 + j]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Wx = Wx.reshape(1, Wx.size[0] * Wx.size[1]);
|
|
|
|
Wh = Wh.reshape(1, Wh.size[0] * Wh.size[1]);
|
|
|
|
h0 = h0.reshape(1, h0.size[0] * h0.size[1]);
|
|
|
|
c0 = c0.reshape(1, c0.size[0] * c0.size[1]);
|
|
|
|
|
|
|
|
LayerParams lstmParams;
|
|
|
|
lstmParams.blobs.resize(5);
|
|
|
|
lstmParams.blobs[0] = Wh;
|
|
|
|
lstmParams.blobs[1] = Wx;
|
|
|
|
lstmParams.blobs[2] = b;
|
|
|
|
lstmParams.blobs[3] = h0;
|
|
|
|
lstmParams.blobs[4] = c0;
|
|
|
|
lstmParams.set("bidirectional", false);
|
|
|
|
Ptr<LSTMLayer> layer = LSTMLayer::create(lstmParams);
|
|
|
|
|
|
|
|
Mat inp = blobFromNPY(_tf("lstm.hidden.input.npy"));
|
|
|
|
std::vector<Mat> inputs(1, inp), outputs;
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
|
|
|
|
Mat h_t_reference = blobFromNPY(_tf("lstm.hidden.output.npy"));
|
|
|
|
normAssert(h_t_reference, outputs[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_RNN_Test_Accuracy_with_, CaffeRecurrent)
|
|
|
|
{
|
|
|
|
Ptr<RNNLayer> layer = RNNLayer::create(LayerParams());
|
|
|
|
|
|
|
|
layer->setWeights(
|
|
|
|
blobFromNPY(_tf("rnn.prototxt.w_0.npy")),
|
|
|
|
blobFromNPY(_tf("rnn.prototxt.w_1.npy")),
|
|
|
|
blobFromNPY(_tf("rnn.prototxt.w_2.npy")),
|
|
|
|
blobFromNPY(_tf("rnn.prototxt.w_3.npy")),
|
|
|
|
blobFromNPY(_tf("rnn.prototxt.w_4.npy")) );
|
|
|
|
|
|
|
|
std::vector<Mat> output, input(1, blobFromNPY(_tf("recurrent.input.npy")));
|
|
|
|
runLayer(layer, input, output);
|
|
|
|
|
|
|
|
Mat h_ref = blobFromNPY(_tf("rnn.prototxt.h_1.npy"));
|
|
|
|
normAssert(h_ref, output[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_LSTM_Test_Accuracy_, Reverse)
|
|
|
|
{
|
|
|
|
// This handcrafted setup calculates (approximately) the prefix sum of the
|
|
|
|
// input, assuming the inputs are suitably small.
|
|
|
|
cv::Mat input(2, 1, CV_32FC1);
|
|
|
|
input.at<float>(0, 0) = 1e-5f;
|
|
|
|
input.at<float>(1, 0) = 2e-5f;
|
|
|
|
|
|
|
|
cv::Mat Wx(4, 1, CV_32FC1);
|
|
|
|
Wx.at<float>(0, 0) = 0.f; // Input gate
|
|
|
|
Wx.at<float>(1, 0) = 0.f; // Forget gate
|
|
|
|
Wx.at<float>(2, 0) = 0.f; // Output gate
|
|
|
|
Wx.at<float>(3, 0) = 1.f; // Update signal
|
|
|
|
|
|
|
|
cv::Mat Wh(4, 1, CV_32FC1);
|
|
|
|
Wh.at<float>(0, 0) = 0.f; // Input gate
|
|
|
|
Wh.at<float>(1, 0) = 0.f; // Forget gate
|
|
|
|
Wh.at<float>(2, 0) = 0.f; // Output gate
|
|
|
|
Wh.at<float>(3, 0) = 0.f; // Update signal
|
|
|
|
|
|
|
|
cv::Mat bias(4, 1, CV_32FC1);
|
|
|
|
bias.at<float>(0, 0) = 1e10f; // Input gate - always allows input to c
|
|
|
|
bias.at<float>(1, 0) = 1e10f; // Forget gate - never forget anything on c
|
|
|
|
bias.at<float>(2, 0) = 1e10f; // Output gate - always output everything
|
|
|
|
bias.at<float>(3, 0) = 0.f; // Update signal
|
|
|
|
|
|
|
|
cv::Mat hInternal = cv::Mat::zeros(1, 1, CV_32FC1);
|
|
|
|
cv::Mat cInternal = cv::Mat::zeros(1, 1, CV_32FC1);
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.set("reverse", true);
|
|
|
|
lp.set("use_timestamp_dim", true);
|
|
|
|
lp.blobs.clear();
|
|
|
|
lp.blobs.push_back(Wh);
|
|
|
|
lp.blobs.push_back(Wx);
|
|
|
|
lp.blobs.push_back(bias);
|
|
|
|
lp.blobs.push_back(hInternal);
|
|
|
|
lp.blobs.push_back(cInternal);
|
|
|
|
|
|
|
|
cv::Ptr<cv::dnn::LSTMLayer> layer = LSTMLayer::create(lp);
|
|
|
|
std::vector<cv::Mat> outputs;
|
|
|
|
std::vector<cv::Mat> inputs;
|
|
|
|
inputs.push_back(input);
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
|
|
|
|
ASSERT_EQ(1, outputs.size());
|
|
|
|
cv::Mat out = outputs[0];
|
|
|
|
ASSERT_EQ(3, out.dims);
|
|
|
|
ASSERT_EQ(shape(2, 1, 1), shape(out));
|
|
|
|
float* data = reinterpret_cast<float*>(out.data);
|
|
|
|
EXPECT_NEAR(std::tanh(1e-5f) + std::tanh(2e-5f), data[0], 1e-10);
|
|
|
|
EXPECT_NEAR(std::tanh(2e-5f), data[1], 1e-10);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class Layer_RNN_Test : public ::testing::Test
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
int nX, nH, nO, nT, nS;
|
|
|
|
Mat Whh, Wxh, bh, Who, bo;
|
|
|
|
Ptr<RNNLayer> layer;
|
|
|
|
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
|
|
|
|
|
|
Layer_RNN_Test()
|
|
|
|
{
|
|
|
|
nT = 3;
|
|
|
|
nS = 5;
|
|
|
|
nX = 31;
|
|
|
|
nH = 64;
|
|
|
|
nO = 100;
|
|
|
|
|
|
|
|
Whh = Mat::ones(nH, nH, CV_32F);
|
|
|
|
Wxh = Mat::ones(nH, nX, CV_32F);
|
|
|
|
bh = Mat::ones(nH, 1, CV_32F);
|
|
|
|
Who = Mat::ones(nO, nH, CV_32F);
|
|
|
|
bo = Mat::ones(nO, 1, CV_32F);
|
|
|
|
|
|
|
|
layer = RNNLayer::create(LayerParams());
|
|
|
|
layer->setProduceHiddenOutput(true);
|
|
|
|
layer->setWeights(Wxh, bh, Whh, Who, bo);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_F(Layer_RNN_Test, get_set_test)
|
|
|
|
{
|
|
|
|
int sz[] = { nT, nS, 1, nX };
|
|
|
|
Mat inp(4, sz, CV_32F);
|
|
|
|
randu(inp, -1., 1.);
|
|
|
|
inputs.push_back(inp);
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
|
|
|
|
EXPECT_EQ(outputs.size(), 2u);
|
|
|
|
EXPECT_EQ(shape(outputs[0]), shape(nT, nS, nO));
|
|
|
|
EXPECT_EQ(shape(outputs[1]), shape(nT, nS, nH));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, Accum)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_OPENCV && target != DNN_TARGET_CPU)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL, CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
|
|
|
|
|
|
testLayerUsingCaffeModels("accum", false, false, 0.0, 0.0, 2);
|
|
|
|
testLayerUsingCaffeModels("accum_ref", false, false, 0.0, 0.0, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, FlowWarp)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
|
|
|
|
|
|
testLayerUsingCaffeModels("flow_warp", false, false, 0.0, 0.0, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, ChannelNorm)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
|
|
testLayerUsingCaffeModels("channel_norm", false, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, DataAugmentation)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
|
|
testLayerUsingCaffeModels("data_augmentation", true, false);
|
|
|
|
testLayerUsingCaffeModels("data_augmentation_2x1", true, false);
|
|
|
|
testLayerUsingCaffeModels("data_augmentation_8x6", true, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, Resample)
|
|
|
|
{
|
|
|
|
if (backend != DNN_BACKEND_OPENCV)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
testLayerUsingCaffeModels("nearest_2inps", false, false, 0.0, 0.0, 2);
|
|
|
|
testLayerUsingCaffeModels("nearest", false, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, Correlation)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER,
|
|
|
|
CV_TEST_TAG_DNN_SKIP_OPENCL, CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
|
|
testLayerUsingCaffeModels("correlation", false, false, 0.0, 0.0, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, Convolution2Inputs)
|
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("conv_2_inps", true, false, 0.0, 0.0, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, ROIPooling_Accuracy)
|
|
|
|
{
|
|
|
|
Net net = readNetFromCaffe(_tf("net_roi_pooling.prototxt"));
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
|
|
|
|
Mat inp = blobFromNPY(_tf("net_roi_pooling.input.npy"));
|
|
|
|
Mat rois = blobFromNPY(_tf("net_roi_pooling.rois.npy"));
|
|
|
|
Mat ref = blobFromNPY(_tf("net_roi_pooling.npy"));
|
|
|
|
|
|
|
|
checkBackend(&inp, &ref);
|
|
|
|
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
|
|
|
|
net.setInput(inp, "input");
|
|
|
|
net.setInput(rois, "rois");
|
|
|
|
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-3 : 1e-5;
|
|
|
|
double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-3 : 1e-4;
|
|
|
|
normAssert(out, ref, "", l1, lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, FasterRCNN_Proposal)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
|
|
|
|
Net net = readNetFromCaffe(_tf("net_faster_rcnn_proposal.prototxt"));
|
|
|
|
|
|
|
|
Mat scores = blobFromNPY(_tf("net_faster_rcnn_proposal.scores.npy"));
|
|
|
|
Mat deltas = blobFromNPY(_tf("net_faster_rcnn_proposal.deltas.npy"));
|
|
|
|
Mat imInfo = (Mat_<float>(1, 3) << 600, 800, 1.6f);
|
|
|
|
|
|
|
|
net.setInput(scores, "rpn_cls_prob_reshape");
|
|
|
|
net.setInput(deltas, "rpn_bbox_pred");
|
|
|
|
net.setInput(imInfo, "im_info");
|
|
|
|
|
|
|
|
std::vector<Mat> outs;
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
net.forward(outs, "output");
|
|
|
|
|
|
|
|
for (int i = 0; i < 2; ++i)
|
|
|
|
{
|
|
|
|
Mat ref = blobFromNPY(_tf(i == 0 ? "net_faster_rcnn_proposal.out_rois.npy" :
|
|
|
|
"net_faster_rcnn_proposal.out_scores.npy"));
|
|
|
|
const int numDets = ref.size[0];
|
|
|
|
EXPECT_LE(numDets, outs[i].size[0]);
|
|
|
|
normAssert(outs[i].rowRange(0, numDets), ref);
|
|
|
|
|
|
|
|
if (numDets < outs[i].size[0])
|
|
|
|
{
|
|
|
|
EXPECT_EQ(countNonZero(outs[i].rowRange(numDets, outs[i].size[0])), 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<Vec4i, Vec2i, bool> > Scale_untrainable;
|
|
|
|
TEST_P(Scale_untrainable, Accuracy)
|
|
|
|
{
|
|
|
|
Vec4i inpShapeVec = get<0>(GetParam());
|
|
|
|
int axis = get<1>(GetParam())[0];
|
|
|
|
int weightsDims = get<1>(GetParam())[1];
|
|
|
|
bool testFusion = get<2>(GetParam());
|
|
|
|
const int inpShape[] = {inpShapeVec[0], inpShapeVec[1], inpShapeVec[2], inpShapeVec[3]};
|
|
|
|
|
|
|
|
// Create a network with two inputs. Scale layer multiplies a first input to
|
|
|
|
// a second one. See http://caffe.berkeleyvision.org/tutorial/layers/scale.html
|
|
|
|
Net net;
|
|
|
|
// Check that this version of Scale layer won't be fused with Convolution layer.
|
|
|
|
if (testFusion)
|
|
|
|
{
|
|
|
|
LayerParams lp;
|
|
|
|
lp.set("kernel_size", 1);
|
|
|
|
lp.set("num_output", 3);
|
|
|
|
lp.set("group", 3);
|
|
|
|
lp.set("bias_term", false);
|
|
|
|
lp.type = "Convolution";
|
|
|
|
lp.name = "testConv";
|
|
|
|
|
|
|
|
std::vector<int> weightsShape(4);
|
|
|
|
weightsShape[0] = 3; // #outChannels
|
|
|
|
weightsShape[1] = 1; // #inpChannels / group
|
|
|
|
weightsShape[2] = 1; // height
|
|
|
|
weightsShape[3] = 1; // width
|
|
|
|
Mat weights(weightsShape, CV_32F);
|
|
|
|
weights.setTo(1);
|
|
|
|
lp.blobs.push_back(weights);
|
|
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
}
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Scale";
|
|
|
|
lp.name = "testLayer";
|
|
|
|
lp.set("axis", axis);
|
|
|
|
int id = net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
net.connect(0, 1, id, 1);
|
|
|
|
|
|
|
|
Mat input(4, inpShape, CV_32F);
|
|
|
|
Mat weights(weightsDims, &inpShape[axis], CV_32F);
|
|
|
|
randu(input, -1, 1);
|
|
|
|
randu(weights, -1, 1);
|
|
|
|
|
|
|
|
std::vector<String> inpNames(2);
|
|
|
|
inpNames[0] = "scale_input";
|
|
|
|
inpNames[1] = "scale_weights";
|
|
|
|
net.setInputsNames(inpNames);
|
|
|
|
net.setInput(input, inpNames[0]);
|
|
|
|
net.setInput(weights, inpNames[1]);
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
Mat ref(input.dims, input.size, CV_32F);
|
|
|
|
float* inpData = (float*)input.data;
|
|
|
|
float* refData = (float*)ref.data;
|
|
|
|
float* weightsData = (float*)weights.data;
|
|
|
|
int spatialSize = 1;
|
|
|
|
for (int i = axis + weightsDims; i < 4; ++i)
|
|
|
|
spatialSize *= inpShape[i];
|
|
|
|
for (int i = 0; i < ref.total(); ++i)
|
|
|
|
{
|
|
|
|
float w = weightsData[(i / spatialSize) % weights.total()];
|
|
|
|
refData[i] = inpData[i] * w;
|
|
|
|
}
|
|
|
|
normAssert(out, ref);
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test, Scale_untrainable, Combine(
|
|
|
|
/*input size*/ Values(Vec4i(2, 3, 4, 5)),
|
|
|
|
/*axis, #dims*/ Values(Vec2i(0, 1), Vec2i(0, 2), Vec2i(0, 3), Vec2i(0, 4),
|
|
|
|
Vec2i(1, 1), Vec2i(1, 2), Vec2i(1, 3),
|
|
|
|
Vec2i(2, 1), Vec2i(2, 2),
|
|
|
|
Vec2i(3, 1)),
|
|
|
|
/*conv fusion*/ testing::Bool()
|
|
|
|
));
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<Vec4i, Vec4i, int, int, int> > Crop;
|
|
|
|
TEST_P(Crop, Accuracy)
|
|
|
|
{
|
|
|
|
Vec4i inpShapeVec = get<0>(GetParam());
|
|
|
|
Vec4i sizShapeVec = get<1>(GetParam());
|
|
|
|
int axis = get<2>(GetParam());
|
|
|
|
int numOffsets = get<3>(GetParam());
|
|
|
|
int offsetVal = get<4>(GetParam());
|
|
|
|
const int inpShape[] = {inpShapeVec[0], inpShapeVec[1], inpShapeVec[2], inpShapeVec[3]};
|
|
|
|
const int sizShape[] = {sizShapeVec[0], sizShapeVec[1], sizShapeVec[2], sizShapeVec[3]};
|
|
|
|
|
|
|
|
// Create a network with two inputs. Crop layer crops a first input to
|
|
|
|
// the size of a second one.
|
|
|
|
// See http://caffe.berkeleyvision.org/tutorial/layers/crop.html
|
|
|
|
Net net;
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.name = "testCrop";
|
|
|
|
lp.type = "Crop";
|
|
|
|
lp.set("axis", axis);
|
|
|
|
if (numOffsets > 0)
|
|
|
|
{
|
|
|
|
std::vector<int> offsets(numOffsets, offsetVal);
|
|
|
|
lp.set("offset", DictValue::arrayInt<int*>(&offsets[0], offsets.size()));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
offsetVal = 0;
|
|
|
|
int id = net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
net.connect(0, 1, id, 1);
|
|
|
|
|
|
|
|
Mat inpImage(4, inpShape, CV_32F);
|
|
|
|
Mat sizImage(4, sizShape, CV_32F);
|
|
|
|
randu(inpImage, -1, 1);
|
|
|
|
randu(sizImage, -1, 1);
|
|
|
|
|
|
|
|
std::vector<String> inpNames(2);
|
|
|
|
inpNames[0] = "cropImage";
|
|
|
|
inpNames[1] = "sizImage";
|
|
|
|
net.setInputsNames(inpNames);
|
|
|
|
net.setInput(inpImage, inpNames[0]);
|
|
|
|
net.setInput(sizImage, inpNames[1]);
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
|
|
|
|
|
|
// There are a few conditions that represent invalid input to the crop
|
|
|
|
// layer, so in those cases we want to verify an exception is thrown.
|
|
|
|
|
|
|
|
bool shouldThrowException = false;
|
|
|
|
if (numOffsets > 1 && numOffsets != 4 - axis)
|
|
|
|
shouldThrowException = true;
|
|
|
|
else
|
|
|
|
for (int i = axis; i < 4; i++)
|
|
|
|
if (sizShape[i] + offsetVal > inpShape[i])
|
|
|
|
shouldThrowException = true;
|
|
|
|
|
|
|
|
Mat out;
|
|
|
|
if (shouldThrowException)
|
|
|
|
{
|
|
|
|
ASSERT_ANY_THROW(out = net.forward());
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
out = net.forward();
|
|
|
|
|
|
|
|
// Finally, compare the cropped output blob from the DNN layer (out)
|
|
|
|
// to a reference blob (ref) that we compute here.
|
|
|
|
|
|
|
|
std::vector<Range> crop_range;
|
|
|
|
crop_range.resize(4, Range::all());
|
|
|
|
for (int i = axis; i < 4; i++)
|
|
|
|
crop_range[i] = Range(offsetVal, sizShape[i] + offsetVal);
|
|
|
|
|
|
|
|
Mat ref(sizImage.dims, sizImage.size, CV_32F);
|
|
|
|
inpImage(&crop_range[0]).copyTo(ref);
|
|
|
|
normAssert(out, ref);
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test, Crop, Combine(
|
|
|
|
/*input blob shape*/ Values(Vec4i(1, 3, 20, 30)),
|
|
|
|
/*cropsize blob shape*/ Values(Vec4i(1, 3, 10, 12)),
|
|
|
|
/*start axis*/ Values(0, 1, 2),
|
|
|
|
/*number of offsets*/ Values(0, 1, 2, 4),
|
|
|
|
/*offset value*/ Values(3, 4)
|
|
|
|
));
|
|
|
|
|
|
|
|
// Check that by default average pooling layer should not count zero padded values
|
|
|
|
// into the normalization area.
|
|
|
|
TEST_P(Test_Caffe_layers, Average_pooling_kernel_area)
|
|
|
|
{
|
|
|
|
LayerParams lp;
|
|
|
|
lp.name = "testAvePool";
|
|
|
|
lp.type = "Pooling";
|
|
|
|
lp.set("kernel_size", 2);
|
|
|
|
lp.set("stride", 2);
|
|
|
|
lp.set("pool", "AVE");
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
// 1 2 | 3
|
|
|
|
// 4 5 | 6
|
|
|
|
// ----+--
|
|
|
|
// 7 8 | 9
|
|
|
|
Mat inp = (Mat_<float>(3, 3) << 1, 2, 3, 4, 5, 6, 7, 8, 9);
|
|
|
|
Mat ref = (Mat_<float>(2, 2) << (1 + 2 + 4 + 5) / 4.f, (3 + 6) / 2.f, (7 + 8) / 2.f, 9);
|
|
|
|
Mat tmp = blobFromImage(inp);
|
|
|
|
net.setInput(blobFromImage(inp));
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
Mat out = net.forward();
|
|
|
|
normAssert(out, blobFromImage(ref));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_Caffe_layers, PriorBox_repeated)
|
|
|
|
{
|
|
|
|
Net net = readNet(_tf("prior_box.prototxt"));
|
|
|
|
int inp_size[] = {1, 3, 10, 10};
|
|
|
|
int shape_size[] = {1, 2, 3, 4};
|
|
|
|
Mat inp(4, inp_size, CV_32F);
|
|
|
|
randu(inp, -1.0f, 1.0f);
|
|
|
|
Mat shape(4, shape_size, CV_32F);
|
|
|
|
randu(shape, -1.0f, 1.0f);
|
|
|
|
net.setInput(inp, "data");
|
|
|
|
net.setInput(shape, "shape");
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
Mat out = net.forward();
|
|
|
|
Mat ref = blobFromNPY(_tf("priorbox_output.npy"));
|
|
|
|
|
|
|
|
double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-3 : 1e-5;
|
|
|
|
double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-3 : 1e-4;
|
|
|
|
normAssert(out, ref, "", l1, lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test PriorBoxLayer in case of no aspect ratios (just squared proposals).
|
|
|
|
TEST_P(Test_Caffe_layers, PriorBox_squares)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
LayerParams lp;
|
|
|
|
lp.name = "testPriorBox";
|
|
|
|
lp.type = "PriorBox";
|
|
|
|
lp.set("min_size", 2);
|
|
|
|
lp.set("flip", true);
|
|
|
|
lp.set("clip", true);
|
|
|
|
float variance[] = {0.1f, 0.1f, 0.2f, 0.2f};
|
|
|
|
float aspectRatios[] = {1.0f}; // That should be ignored.
|
|
|
|
lp.set("variance", DictValue::arrayReal<float*>(&variance[0], 4));
|
|
|
|
lp.set("aspect_ratio", DictValue::arrayReal<float*>(&aspectRatios[0], 1));
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
int id = net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
net.connect(0, 0, id, 1); // The second input is an input image. Shapes are used for boxes normalization.
|
|
|
|
Mat inp(1, 2, CV_32F);
|
|
|
|
randu(inp, -1, 1);
|
|
|
|
net.setInput(blobFromImage(inp));
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
Mat ref = (Mat_<float>(4, 4) << 0.0, 0.0, 0.75, 1.0,
|
|
|
|
0.25, 0.0, 1.0, 1.0,
|
|
|
|
0.1f, 0.1f, 0.2f, 0.2f,
|
|
|
|
0.1f, 0.1f, 0.2f, 0.2f);
|
|
|
|
double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 2e-5 : 1e-5;
|
|
|
|
normAssert(out.reshape(1, 4), ref, "", l1);
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef TestWithParam<tuple<int, int> > Layer_Test_DWconv_Prelu;
|
|
|
|
TEST_P(Layer_Test_DWconv_Prelu, Accuracy)
|
|
|
|
{
|
|
|
|
// Test case
|
|
|
|
// input img size 3x16x16 value all 1
|
|
|
|
// |
|
|
|
|
// v
|
|
|
|
// dw_conv weight[0]=-1 weight[1]=-2 weight[2]=-3 bias={1,2,3}
|
|
|
|
// |
|
|
|
|
// v
|
|
|
|
// prelu weight={1,2,3}
|
|
|
|
// |
|
|
|
|
// v
|
|
|
|
// output out size 3x14x14 if right: out[0]=-8 out[0]=-32 out[0]=-72
|
|
|
|
// but current opencv output: out[0]=-24 out[0]=-48 out[0]=-72
|
|
|
|
|
|
|
|
const int num_input = get<0>(GetParam()); //inpChannels
|
|
|
|
const int group = 3; //outChannels=group when group>1
|
|
|
|
const int num_output = get<1>(GetParam());
|
|
|
|
const int kernel_depth = num_input/group;
|
|
|
|
CV_Assert_N(num_output >= group, num_output % group == 0, num_input % group == 0);
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
//layer 1: dwconv
|
|
|
|
LayerParams lp;
|
|
|
|
lp.name = "dwconv";
|
|
|
|
lp.type = "Convolution";
|
|
|
|
lp.set("kernel_size", 3);
|
|
|
|
lp.set("num_output", num_output);
|
|
|
|
lp.set("pad", 0);
|
|
|
|
lp.set("group", group);
|
|
|
|
lp.set("stride", 1);
|
|
|
|
lp.set("engine", "CAFFE");
|
|
|
|
lp.set("bias_term", "true");
|
|
|
|
|
|
|
|
std::vector<int> weightsShape(4);
|
|
|
|
weightsShape[0] = num_output; // #outChannels
|
|
|
|
weightsShape[1] = kernel_depth; // #inpChannels / group
|
|
|
|
weightsShape[2] = 3; // height
|
|
|
|
weightsShape[3] = 3; // width
|
|
|
|
Mat weights(weightsShape, CV_32F, Scalar(1));
|
|
|
|
|
|
|
|
//assign weights
|
|
|
|
for (int i = 0; i < weightsShape[0]; ++i)
|
|
|
|
{
|
|
|
|
for (int j = 0; j < weightsShape[1]; ++j)
|
|
|
|
{
|
|
|
|
for (int k = 0; k < weightsShape[2]; ++k)
|
|
|
|
{
|
|
|
|
for (int l = 0; l < weightsShape[3]; ++l)
|
|
|
|
{
|
|
|
|
weights.ptr<float>(i, j, k)[l]=-1*(i+1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
lp.blobs.push_back(weights);
|
|
|
|
|
|
|
|
//assign bias
|
|
|
|
Mat bias(1, num_output, CV_32F, Scalar(1));
|
|
|
|
for (int i = 0; i < 1; ++i)
|
|
|
|
{
|
|
|
|
for (int j = 0; j < num_output; ++j)
|
|
|
|
{
|
|
|
|
bias.ptr<float>(i)[j]=j+1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
lp.blobs.push_back(bias);
|
|
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
|
|
|
|
//layer 2: prelu
|
|
|
|
LayerParams lpr;
|
|
|
|
lpr.name = "dw_relu";
|
|
|
|
lpr.type = "PReLU";
|
|
|
|
Mat weightsp(1, num_output, CV_32F, Scalar(1));
|
|
|
|
|
|
|
|
//assign weights
|
|
|
|
for (int i = 0; i < 1; ++i)
|
|
|
|
{
|
|
|
|
for (int j = 0; j < num_output; ++j)
|
|
|
|
{
|
|
|
|
weightsp.ptr<float>(i)[j]=j+1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
lpr.blobs.push_back(weightsp);
|
|
|
|
net.addLayerToPrev(lpr.name, lpr.type, lpr);
|
|
|
|
|
|
|
|
int shape[] = {1, num_input, 16, 16};
|
|
|
|
Mat in_blob(4, &shape[0], CV_32FC1, Scalar(1));
|
|
|
|
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
|
|
net.setInput(in_blob);
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
//assign target
|
|
|
|
std::vector<int> outShape(4);
|
|
|
|
outShape[0] = 1;
|
|
|
|
outShape[1] = num_output; // outChannels
|
|
|
|
outShape[2] = 14; // height
|
|
|
|
outShape[3] = 14; // width
|
|
|
|
Mat target(outShape, CV_32F, Scalar(1));
|
|
|
|
for (int i = 0; i < outShape[0]; ++i)
|
|
|
|
{
|
|
|
|
for (int j = 0; j < outShape[1]; ++j)
|
|
|
|
{
|
|
|
|
for (int k = 0; k < outShape[2]; ++k)
|
|
|
|
{
|
|
|
|
for (int l = 0; l < outShape[3]; ++l)
|
|
|
|
{
|
|
|
|
target.ptr<float>(i, j, k)[l]=(-9*kernel_depth*(j+1)+j+1)*(j+1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
normAssert(out, target);
|
|
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_DWconv_Prelu, Combine(Values(3, 6), Values(3, 6)));
|
|
|
|
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
|
|
// Using Intel's Model Optimizer generate .xml and .bin files:
|
|
|
|
// ./ModelOptimizer -w /path/to/caffemodel -d /path/to/prototxt \
|
|
|
|
// -p FP32 -i -b ${batch_size} -o /path/to/output/folder
|
|
|
|
typedef testing::TestWithParam<tuple<Backend, Target> > Layer_Test_Convolution_DLDT;
|
|
|
|
TEST_P(Layer_Test_Convolution_DLDT, Accuracy)
|
|
|
|
{
|
|
|
|
const Backend backendId = get<0>(GetParam());
|
|
|
|
const Target targetId = get<1>(GetParam());
|
|
|
|
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
|
|
|
|
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
throw SkipTestException("No support for async forward");
|
|
|
|
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);
|
|
|
|
else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
|
|
|
|
else
|
|
|
|
FAIL() << "Unknown backendId";
|
|
|
|
|
|
|
|
Net netDefault = readNet(_tf("layer_convolution.caffemodel"), _tf("layer_convolution.prototxt"));
|
|
|
|
Net net = readNet(_tf("layer_convolution.xml"), _tf("layer_convolution.bin"));
|
|
|
|
|
|
|
|
Mat inp = blobFromNPY(_tf("blob.npy"));
|
|
|
|
|
|
|
|
netDefault.setInput(inp);
|
|
|
|
netDefault.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
|
|
Mat outDefault = netDefault.forward();
|
|
|
|
|
|
|
|
net.setInput(inp);
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
double l1 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 1.5e-3 : 1e-5;
|
|
|
|
double lInf = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 1.8e-2 : 1e-4;
|
|
|
|
normAssert(outDefault, out, "", l1, lInf);
|
|
|
|
|
|
|
|
std::vector<int> outLayers = net.getUnconnectedOutLayers();
|
|
|
|
ASSERT_EQ(net.getLayer(outLayers[0])->name, "output");
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
ASSERT_EQ(net.getLayer(outLayers[0])->type, "Convolution");
|
|
|
|
else
|
|
|
|
ASSERT_EQ(net.getLayer(outLayers[0])->type, "Add");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Layer_Test_Convolution_DLDT, setInput_uint8)
|
|
|
|
{
|
|
|
|
const Backend backendId = get<0>(GetParam());
|
|
|
|
const Target targetId = get<1>(GetParam());
|
|
|
|
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
|
|
|
|
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
throw SkipTestException("No support for async forward");
|
|
|
|
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);
|
|
|
|
else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
|
|
|
|
else
|
|
|
|
FAIL() << "Unknown backendId";
|
|
|
|
|
|
|
|
int blobSize[] = {2, 6, 75, 113};
|
|
|
|
Mat inputs[] = {Mat(4, &blobSize[0], CV_8U), Mat()};
|
|
|
|
|
|
|
|
randu(inputs[0], 0, 255);
|
|
|
|
inputs[0].convertTo(inputs[1], CV_32F);
|
|
|
|
|
|
|
|
Mat outs[2];
|
|
|
|
for (int i = 0; i < 2; ++i)
|
|
|
|
{
|
|
|
|
Net net = readNet(_tf("layer_convolution.xml"), _tf("layer_convolution.bin"));
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
net.setInput(inputs[i]);
|
|
|
|
outs[i] = net.forward();
|
|
|
|
ASSERT_EQ(outs[i].type(), CV_32F);
|
|
|
|
}
|
|
|
|
if (targetId != DNN_TARGET_MYRIAD)
|
|
|
|
normAssert(outs[0], outs[1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Layer_Test_Convolution_DLDT, multithreading)
|
|
|
|
{
|
|
|
|
const Backend backendId = get<0>(GetParam());
|
|
|
|
const Target targetId = get<1>(GetParam());
|
|
|
|
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
|
|
|
|
|
|
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
throw SkipTestException("No support for async forward");
|
|
|
|
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);
|
|
|
|
else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
|
|
|
|
else
|
|
|
|
FAIL() << "Unknown backendId";
|
|
|
|
|
|
|
|
std::string xmlPath = _tf("layer_convolution.xml");
|
|
|
|
std::string binPath = _tf("layer_convolution.bin");
|
|
|
|
Net firstNet = readNet(xmlPath, binPath);
|
|
|
|
Net secondNet = readNet(xmlPath, binPath);
|
|
|
|
Mat inp = blobFromNPY(_tf("blob.npy"));
|
|
|
|
|
|
|
|
firstNet.setInput(inp);
|
|
|
|
secondNet.setInput(inp);
|
|
|
|
firstNet.setPreferableBackend(backendId);
|
|
|
|
firstNet.setPreferableTarget(targetId);
|
|
|
|
secondNet.setPreferableBackend(backendId);
|
|
|
|
secondNet.setPreferableTarget(targetId);
|
|
|
|
|
|
|
|
Mat out1, out2;
|
|
|
|
std::thread t1([&]{out1 = firstNet.forward();});
|
|
|
|
std::thread t2([&]{out2 = secondNet.forward();});
|
|
|
|
|
|
|
|
t1.join();
|
|
|
|
t2.join();
|
|
|
|
|
|
|
|
Mat ref = blobFromNPY(_tf("layer_convolution.npy"));
|
|
|
|
double l1 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 1.5e-3 : 1e-5;
|
|
|
|
double lInf = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 1.8e-2 : 1e-4;
|
|
|
|
normAssert(out1, ref, "first thread", l1, lInf);
|
|
|
|
normAssert(out2, ref, "second thread", l1, lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Convolution_DLDT,
|
|
|
|
dnnBackendsAndTargetsIE()
|
|
|
|
);
|
|
|
|
|
|
|
|
// 1. Create a .prototxt file with the following network:
|
|
|
|
// layer {
|
|
|
|
// type: "Input" name: "data" top: "data"
|
|
|
|
// input_param { shape { dim: 1 dim: 2 dim: 3 } }
|
|
|
|
// }
|
|
|
|
// layer {
|
|
|
|
// type: "Input" name: "second_input" top: "second_input"
|
|
|
|
// input_param { shape { dim: 1 dim: 2 dim: 3 } }
|
|
|
|
// }
|
|
|
|
// layer {
|
|
|
|
// type: "Eltwise" name: "output" top: "output"
|
|
|
|
// bottom: "data" bottom: "second_input"
|
|
|
|
// eltwise_param { operation: SUM }
|
|
|
|
// }
|
|
|
|
//
|
|
|
|
// 2. Create a .caffemodel file using Caffe:
|
|
|
|
//
|
|
|
|
// import caffe
|
|
|
|
// net = caffe.Net('/path/to/prototxt', caffe.TEST)
|
|
|
|
// net.save('/path/to/caffemodel')
|
|
|
|
//
|
|
|
|
// 3. Convert using ModelOptimizer.
|
|
|
|
typedef testing::TestWithParam<tuple<int, int, Target, std::vector<int> > > Test_DLDT_two_inputs_3dim;
|
|
|
|
TEST_P(Test_DLDT_two_inputs_3dim, as_IR)
|
|
|
|
{
|
|
|
|
int firstInpType = get<0>(GetParam());
|
|
|
|
int secondInpType = get<1>(GetParam());
|
|
|
|
Target targetId = get<2>(GetParam());
|
|
|
|
|
|
|
|
Net net = readNet(_tf("net_two_inputs.xml"), _tf("net_two_inputs.bin"));
|
|
|
|
std::vector<int> inpSize = get<3>(GetParam());
|
|
|
|
Mat firstInp(3, inpSize.data(), firstInpType);
|
|
|
|
Mat secondInp(3, inpSize.data(), secondInpType);
|
|
|
|
randu(firstInp, 0, 255);
|
|
|
|
randu(secondInp, 0, 255);
|
|
|
|
|
|
|
|
net.setInput(firstInp, "data");
|
|
|
|
net.setInput(secondInp, "second_input");
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
|
|
|
|
double l1 = ((targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) &&
|
|
|
|
(firstInpType == CV_32F || secondInpType == CV_32F)) ? 0.06 : 0.0;
|
|
|
|
double lInf = ((targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) &&
|
|
|
|
(firstInpType == CV_32F || secondInpType == CV_32F)) ? 0.23 : 0.0;
|
|
|
|
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
Mat ref;
|
|
|
|
cv::add(firstInp, secondInp, ref, Mat(), CV_32F);
|
|
|
|
normAssert(out, ref, "", l1, lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector< std::vector<int> > list_sizes{ {1, 2, 3}, {3, 2, 1}, {5, 5, 5}, {13, 7, 11} };
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_DLDT_two_inputs_3dim, Combine(
|
|
|
|
Values(CV_8U, CV_32F), Values(CV_8U, CV_32F),
|
|
|
|
testing::ValuesIn(getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)),
|
|
|
|
testing::ValuesIn(list_sizes)
|
|
|
|
));
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<int, int, tuple<Backend, Target> > > Test_DLDT_two_inputs;
|
|
|
|
TEST_P(Test_DLDT_two_inputs, as_backend)
|
|
|
|
{
|
|
|
|
static const float kScale = 0.5f;
|
|
|
|
static const float kScaleInv = 1.0f / kScale;
|
|
|
|
|
|
|
|
Backend backendId = get<0>(get<2>(GetParam()));
|
|
|
|
Target targetId = get<1>(get<2>(GetParam()));
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Eltwise";
|
|
|
|
lp.name = "testLayer";
|
|
|
|
lp.set("operation", "sum");
|
|
|
|
int eltwiseId = net.addLayerToPrev(lp.name, lp.type, lp); // connect to a first input
|
|
|
|
net.connect(0, 1, eltwiseId, 1); // connect to a second input
|
|
|
|
|
|
|
|
int inpSize[] = {1, 2, 3, 4};
|
|
|
|
Mat firstInp(4, &inpSize[0], get<0>(GetParam()));
|
|
|
|
Mat secondInp(4, &inpSize[0], get<1>(GetParam()));
|
|
|
|
randu(firstInp, 0, 255);
|
|
|
|
randu(secondInp, 0, 255);
|
|
|
|
|
|
|
|
net.setInputsNames({"data", "second_input"});
|
|
|
|
net.setInput(firstInp, "data", kScale);
|
|
|
|
net.setInput(secondInp, "second_input", kScaleInv);
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
Mat ref;
|
|
|
|
addWeighted(firstInp, kScale, secondInp, kScaleInv, 0, ref, CV_32F);
|
|
|
|
// Output values are in range [0, 637.5].
|
|
|
|
double l1 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 0.06 : 1e-6;
|
|
|
|
double lInf = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 0.3 : 1e-5;
|
|
|
|
normAssert(out, ref, "", l1, lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_DLDT_two_inputs, Combine(
|
|
|
|
Values(CV_8U, CV_32F), Values(CV_8U, CV_32F),
|
|
|
|
dnnBackendsAndTargets()
|
|
|
|
));
|
|
|
|
|
|
|
|
class UnsupportedLayer : public Layer
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
UnsupportedLayer(const LayerParams ¶ms) : Layer(params) {}
|
|
|
|
|
|
|
|
static Ptr<Layer> create(const LayerParams& params)
|
|
|
|
{
|
|
|
|
return Ptr<Layer>(new UnsupportedLayer(params));
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
|
|
{
|
|
|
|
return backendId == DNN_BACKEND_OPENCV;
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual void forward(cv::InputArrayOfArrays inputs, cv::OutputArrayOfArrays outputs, cv::OutputArrayOfArrays internals) CV_OVERRIDE {}
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef DNNTestLayer Test_DLDT_layers;
|
|
|
|
|
|
|
|
static void test_dldt_fused_output(Backend backend, Target target)
|
|
|
|
{
|
|
|
|
static const int kNumChannels = 3;
|
|
|
|
Net net;
|
|
|
|
{
|
|
|
|
LayerParams lp;
|
|
|
|
lp.set("kernel_size", 1);
|
|
|
|
lp.set("num_output", 3);
|
|
|
|
lp.set("bias_term", false);
|
|
|
|
lp.type = "Convolution";
|
|
|
|
lp.name = "testConv";
|
|
|
|
lp.blobs.push_back(Mat({kNumChannels, 1, 1, 1}, CV_32F, Scalar(1)));
|
|
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
}
|
|
|
|
{
|
|
|
|
LayerParams lp;
|
|
|
|
lp.set("bias_term", false);
|
|
|
|
lp.type = "Scale";
|
|
|
|
lp.name = "testScale";
|
|
|
|
lp.blobs.push_back(Mat({kNumChannels}, CV_32F, Scalar(1)));
|
|
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
}
|
|
|
|
{
|
|
|
|
LayerParams lp;
|
|
|
|
net.addLayerToPrev("unsupported_layer", "Unsupported", lp);
|
|
|
|
}
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
net.setInput(Mat({1, 1, 2, 3}, CV_32FC1, Scalar(1)));
|
|
|
|
net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_DLDT_layers, fused_output)
|
|
|
|
{
|
|
|
|
CV_DNN_REGISTER_LAYER_CLASS(Unsupported, UnsupportedLayer);
|
|
|
|
try
|
|
|
|
{
|
|
|
|
test_dldt_fused_output(backend, target);
|
|
|
|
}
|
|
|
|
catch (const std::exception& e)
|
|
|
|
{
|
|
|
|
ADD_FAILURE() << "Exception: " << e.what();
|
|
|
|
}
|
|
|
|
catch(...)
|
|
|
|
{
|
|
|
|
ADD_FAILURE() << "Unknown exception";
|
|
|
|
}
|
|
|
|
LayerFactory::unregisterLayer("Unsupported");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_DLDT_layers, multiple_networks)
|
|
|
|
{
|
|
|
|
Net nets[2];
|
|
|
|
for (int i = 0; i < 2; ++i)
|
|
|
|
{
|
|
|
|
nets[i].setInputsNames(std::vector<String>(1, format("input_%d", i)));
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.set("kernel_size", 1);
|
|
|
|
lp.set("num_output", 1);
|
|
|
|
lp.set("bias_term", false);
|
|
|
|
lp.type = "Convolution";
|
|
|
|
lp.name = format("testConv_%d", i);
|
|
|
|
lp.blobs.push_back(Mat({1, 1, 1, 1}, CV_32F, Scalar(1 + i)));
|
|
|
|
nets[i].addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
nets[i].setPreferableBackend(backend);
|
|
|
|
nets[i].setPreferableTarget(target);
|
|
|
|
nets[i].setInput(Mat({1, 1, 2, 3}, CV_32FC1, Scalar(1)));
|
|
|
|
}
|
|
|
|
Mat out_1 = nets[0].forward();
|
|
|
|
Mat out_2 = nets[1].forward();
|
|
|
|
// After the second model is initialized we try to receive an output from the first network again.
|
|
|
|
out_1 = nets[0].forward();
|
|
|
|
normAssert(2 * out_1, out_2);
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_DLDT_layers, dnnBackendsAndTargets());
|
|
|
|
|
|
|
|
#endif // HAVE_INF_ENGINE
|
|
|
|
|
|
|
|
// Test a custom layer.
|
|
|
|
class CustomInterpLayer CV_FINAL : public Layer
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CustomInterpLayer(const LayerParams ¶ms) : Layer(params)
|
|
|
|
{
|
|
|
|
zoomFactor = params.get<int>("zoom_factor", 0);
|
|
|
|
outWidth = params.get<int>("width", 0);
|
|
|
|
outHeight = params.get<int>("height", 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static Ptr<Layer> create(LayerParams& params)
|
|
|
|
{
|
|
|
|
return Ptr<Layer>(new CustomInterpLayer(params));
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual bool getMemoryShapes(const std::vector<std::vector<int> > &inputs,
|
|
|
|
const int requiredOutputs,
|
|
|
|
std::vector<std::vector<int> > &outputs,
|
|
|
|
std::vector<std::vector<int> > &internals) const CV_OVERRIDE
|
|
|
|
{
|
|
|
|
const int batchSize = inputs[0][0];
|
|
|
|
const int numChannels = inputs[0][1];
|
|
|
|
const int inpHeight = inputs[0][2];
|
|
|
|
const int inpWidth = inputs[0][3];
|
|
|
|
|
|
|
|
std::vector<int> outShape(4);
|
|
|
|
outShape[0] = batchSize;
|
|
|
|
outShape[1] = numChannels;
|
|
|
|
outShape[2] = outHeight != 0 ? outHeight : (inpHeight + (inpHeight - 1) * (zoomFactor - 1));
|
|
|
|
outShape[3] = outWidth != 0 ? outWidth : (inpWidth + (inpWidth - 1) * (zoomFactor - 1));
|
|
|
|
outputs.assign(1, outShape);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual void finalize(InputArrayOfArrays, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
|
|
|
{
|
|
|
|
std::vector<Mat> outputs;
|
|
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
|
|
|
|
if (!outWidth && !outHeight)
|
|
|
|
{
|
|
|
|
outHeight = outputs[0].size[2];
|
|
|
|
outWidth = outputs[0].size[3];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Implementation of this custom layer is based on https://github.com/cdmh/deeplab-public/blob/master/src/caffe/layers/interp_layer.cpp
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
|
|
|
|
if (inputs_arr.depth() == CV_16S)
|
|
|
|
{
|
|
|
|
forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
|
|
inputs_arr.getMatVector(inputs);
|
|
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
|
|
|
|
Mat& inp = inputs[0];
|
|
|
|
Mat& out = outputs[0];
|
|
|
|
const float* inpData = (float*)inp.data;
|
|
|
|
float* outData = (float*)out.data;
|
|
|
|
|
|
|
|
const int batchSize = inp.size[0];
|
|
|
|
const int numChannels = inp.size[1];
|
|
|
|
const int inpHeight = inp.size[2];
|
|
|
|
const int inpWidth = inp.size[3];
|
|
|
|
|
|
|
|
const float rheight = (outHeight > 1) ? static_cast<float>(inpHeight - 1) / (outHeight - 1) : 0.f;
|
|
|
|
const float rwidth = (outWidth > 1) ? static_cast<float>(inpWidth - 1) / (outWidth - 1) : 0.f;
|
|
|
|
for (int h2 = 0; h2 < outHeight; ++h2)
|
|
|
|
{
|
|
|
|
const float h1r = rheight * h2;
|
|
|
|
const int h1 = h1r;
|
|
|
|
const int h1p = (h1 < inpHeight - 1) ? 1 : 0;
|
|
|
|
const float h1lambda = h1r - h1;
|
|
|
|
const float h0lambda = 1.f - h1lambda;
|
|
|
|
for (int w2 = 0; w2 < outWidth; ++w2)
|
|
|
|
{
|
|
|
|
const float w1r = rwidth * w2;
|
|
|
|
const int w1 = w1r;
|
|
|
|
const int w1p = (w1 < inpWidth - 1) ? 1 : 0;
|
|
|
|
const float w1lambda = w1r - w1;
|
|
|
|
const float w0lambda = 1.f - w1lambda;
|
|
|
|
const float* pos1 = inpData + h1 * inpWidth + w1;
|
|
|
|
float* pos2 = outData + h2 * outWidth + w2;
|
|
|
|
for (int c = 0; c < batchSize * numChannels; ++c)
|
|
|
|
{
|
|
|
|
pos2[0] =
|
|
|
|
h0lambda * (w0lambda * pos1[0] + w1lambda * pos1[w1p]) +
|
|
|
|
h1lambda * (w0lambda * pos1[h1p * inpWidth] + w1lambda * pos1[h1p * inpWidth + w1p]);
|
|
|
|
pos1 += inpWidth * inpHeight;
|
|
|
|
pos2 += outWidth * outHeight;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
int outWidth, outHeight, zoomFactor;
|
|
|
|
};
|
|
|
|
|
|
|
|
#ifndef OPENCV_DNN_EXTERNAL_PROTOBUF
|
|
|
|
TEST_P(Test_Caffe_layers, Interp)
|
|
|
|
#else
|
|
|
|
TEST_P(Test_Caffe_layers, DISABLED_Interp) // requires patched protobuf (available in OpenCV source tree only)
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021030000)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
|
|
|
|
|
|
|
|
// Test a custom layer.
|
|
|
|
CV_DNN_REGISTER_LAYER_CLASS(Interp, CustomInterpLayer);
|
|
|
|
try
|
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_interp", false, false);
|
|
|
|
}
|
|
|
|
catch (...)
|
|
|
|
{
|
|
|
|
LayerFactory::unregisterLayer("Interp");
|
|
|
|
throw;
|
|
|
|
}
|
|
|
|
LayerFactory::unregisterLayer("Interp");
|
|
|
|
|
|
|
|
// Test an implemented layer.
|
|
|
|
testLayerUsingCaffeModels("layer_interp", false, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_Caffe_layers, dnnBackendsAndTargets());
|
|
|
|
|
|
|
|
TEST(Layer_Test_PoolingIndices, Accuracy)
|
|
|
|
{
|
|
|
|
Net net;
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.set("pool", "max");
|
|
|
|
lp.set("kernel_w", 2);
|
|
|
|
lp.set("kernel_h", 2);
|
|
|
|
lp.set("stride_w", 2);
|
|
|
|
lp.set("stride_h", 2);
|
|
|
|
lp.set("pad_w", 0);
|
|
|
|
lp.set("pad_h", 0);
|
|
|
|
lp.name = "testLayer.name"; // This test also checks that OpenCV lets use names with dots.
|
|
|
|
lp.type = "Pooling";
|
|
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
|
|
|
|
Mat inp(10, 10, CV_8U);
|
|
|
|
randu(inp, 0, 255);
|
|
|
|
|
|
|
|
Mat maxValues(5, 5, CV_32F, Scalar(-1)), indices(5, 5, CV_32F, Scalar(-1));
|
|
|
|
for (int y = 0; y < 10; ++y)
|
|
|
|
{
|
|
|
|
int dstY = y / 2;
|
|
|
|
for (int x = 0; x < 10; ++x)
|
|
|
|
{
|
|
|
|
int dstX = x / 2;
|
|
|
|
uint8_t val = inp.at<uint8_t>(y, x);
|
|
|
|
if ((float)inp.at<uint8_t>(y, x) > maxValues.at<float>(dstY, dstX))
|
|
|
|
{
|
|
|
|
maxValues.at<float>(dstY, dstX) = val;
|
|
|
|
indices.at<float>(dstY, dstX) = y * 10 + x;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
|
|
net.setInput(blobFromImage(inp));
|
|
|
|
|
|
|
|
std::vector<Mat> outputs;
|
|
|
|
net.forward(outputs, lp.name);
|
|
|
|
normAssert(maxValues, outputs[0].reshape(1, 5));
|
|
|
|
normAssert(indices, outputs[1].reshape(1, 5));
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<Vec4i, int, tuple<Backend, Target> > > Layer_Test_ShuffleChannel;
|
|
|
|
TEST_P(Layer_Test_ShuffleChannel, Accuracy)
|
|
|
|
{
|
|
|
|
Vec4i inpShapeVec = get<0>(GetParam());
|
|
|
|
int group = get<1>(GetParam());
|
|
|
|
ASSERT_EQ(inpShapeVec[1] % group, 0);
|
|
|
|
const int groupSize = inpShapeVec[1] / group;
|
|
|
|
int backendId = get<0>(get<2>(GetParam()));
|
|
|
|
int targetId = get<1>(get<2>(GetParam()));
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
LayerParams lp;
|
|
|
|
lp.set("group", group);
|
|
|
|
lp.type = "ShuffleChannel";
|
|
|
|
lp.name = "testLayer";
|
|
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
|
|
|
|
const int inpShape[] = {inpShapeVec[0], inpShapeVec[1], inpShapeVec[2], inpShapeVec[3]};
|
|
|
|
Mat inp(4, inpShape, CV_32F);
|
|
|
|
randu(inp, 0, 255);
|
|
|
|
|
|
|
|
net.setInput(inp);
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
double l1 = (targetId == DNN_TARGET_OPENCL_FP16) ? 5e-2 : 1e-5;
|
|
|
|
double lInf = (targetId == DNN_TARGET_OPENCL_FP16) ? 7e-2 : 1e-4;
|
|
|
|
for (int n = 0; n < inpShapeVec[0]; ++n)
|
|
|
|
{
|
|
|
|
for (int c = 0; c < inpShapeVec[1]; ++c)
|
|
|
|
{
|
|
|
|
Mat outChannel = getPlane(out, n, c);
|
|
|
|
Mat inpChannel = getPlane(inp, n, groupSize * (c % group) + c / group);
|
|
|
|
normAssert(outChannel, inpChannel, "", l1, lInf);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_ShuffleChannel, Combine(
|
|
|
|
/*input shape*/ Values(Vec4i(1, 6, 5, 7), Vec4i(3, 12, 1, 4)),
|
|
|
|
/*group*/ Values(1, 2, 3, 6), dnnBackendsAndTargets(/*with IE*/ false)
|
|
|
|
));
|
|
|
|
|
|
|
|
// Check if relu is not fused to convolution if we requested it's output
|
|
|
|
TEST(Layer_Test_Convolution, relu_fusion)
|
|
|
|
{
|
|
|
|
Net net;
|
|
|
|
{
|
|
|
|
LayerParams lp;
|
|
|
|
lp.set("kernel_size", 1);
|
|
|
|
lp.set("num_output", 1);
|
|
|
|
lp.set("bias_term", false);
|
|
|
|
lp.type = "Convolution";
|
|
|
|
lp.name = "testConv";
|
|
|
|
|
|
|
|
int weightsShape[] = {1, 1, 1, 1};
|
|
|
|
Mat weights(4, &weightsShape[0], CV_32F, Scalar(1));
|
|
|
|
lp.blobs.push_back(weights);
|
|
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
}
|
|
|
|
{
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "ReLU";
|
|
|
|
lp.name = "testReLU";
|
|
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
}
|
|
|
|
int sz[] = {1, 1, 2, 3};
|
|
|
|
Mat input(4, &sz[0], CV_32F);
|
|
|
|
randu(input, -1.0, -0.1);
|
|
|
|
net.setInput(input);
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
|
|
Mat output = net.forward("testConv");
|
|
|
|
normAssert(input, output);
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<bool, tuple<Backend, Target> > > Layer_Test_Eltwise_unequal;
|
|
|
|
TEST_P(Layer_Test_Eltwise_unequal, accuracy_input_0_truncate)
|
|
|
|
{
|
|
|
|
bool weighted = get<0>(GetParam());
|
|
|
|
int backendId = get<0>(get<1>(GetParam()));
|
|
|
|
int targetId = get<1>(get<1>(GetParam()));
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Eltwise";
|
|
|
|
lp.name = "testLayer";
|
|
|
|
lp.set<std::string>("output_channels_mode", "input_0_truncate");
|
|
|
|
|
|
|
|
const int inpShapes[][4] = {{1, 4, 2, 2}, {1, 5, 2, 2}, {1, 3, 2, 2}};
|
|
|
|
const int out_channels = inpShapes[0][1];
|
|
|
|
std::vector<String> inpNames(3);
|
|
|
|
std::vector<Mat> inputs(3);
|
|
|
|
|
|
|
|
std::vector<float> weights(3, 1);
|
|
|
|
if (weighted)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < inputs.size(); ++i)
|
|
|
|
weights[i] = -0.125f + i * 0.25f;
|
|
|
|
lp.set("coeff", DictValue::arrayReal<float*>(&weights[0], weights.size()));
|
|
|
|
}
|
|
|
|
|
|
|
|
int eltwiseId = net.addLayer(lp.name, lp.type, lp);
|
|
|
|
for (int i = 0; i < inputs.size(); ++i)
|
|
|
|
{
|
|
|
|
inputs[i].create(4, inpShapes[i], CV_32F);
|
|
|
|
size_t total = inputs[i].total();
|
|
|
|
for (size_t j = 0; j < total; j++)
|
|
|
|
inputs[i].ptr<float>()[j] = j + i * 100;
|
|
|
|
inpNames[i] = format("input_%d", i);
|
|
|
|
net.connect(0, i, eltwiseId, i);
|
|
|
|
}
|
|
|
|
Mat ref(4, inpShapes[0], CV_32F, Scalar(0));
|
|
|
|
|
|
|
|
net.setInputsNames(inpNames);
|
|
|
|
for (int i = 0; i < inputs.size(); ++i)
|
|
|
|
{
|
|
|
|
//std::cout << ref.reshape(1,1) << endl;
|
|
|
|
net.setInput(inputs[i], inpNames[i]);
|
|
|
|
for (size_t batchId = 0; batchId < ref.size[0]; batchId++)
|
|
|
|
{
|
|
|
|
int input_channels = inputs[i].size[1];
|
|
|
|
Range ranges[4] = { Range(batchId, batchId + 1), Range(0, std::min(out_channels, input_channels)), Range::all(), Range::all() };
|
|
|
|
Mat ref_slice = ref(ranges);
|
|
|
|
Mat input_slice = inputs[i](ranges);
|
|
|
|
ref_slice += weights[i] * input_slice;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
Mat out = net.forward();
|
|
|
|
normAssert(out, ref);
|
|
|
|
if (testing::Test::HasFailure())
|
|
|
|
{
|
|
|
|
std::cout << out.reshape(1,1) << endl;
|
|
|
|
std::cout << ref.reshape(1,1) << endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Layer_Test_Eltwise_unequal, accuracy_input_0)
|
|
|
|
{
|
|
|
|
bool weighted = get<0>(GetParam());
|
|
|
|
int backendId = get<0>(get<1>(GetParam()));
|
|
|
|
int targetId = get<1>(get<1>(GetParam()));
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Eltwise";
|
|
|
|
lp.name = "testLayer";
|
|
|
|
lp.set<std::string>("output_channels_mode", "input_0");
|
|
|
|
|
|
|
|
const int inpShapes[][4] = {{1, 4, 2, 2}, {1, 2, 2, 2}, {1, 3, 2, 2}};
|
|
|
|
const int out_channels = inpShapes[0][1];
|
|
|
|
std::vector<String> inpNames(3);
|
|
|
|
std::vector<Mat> inputs(3);
|
|
|
|
|
|
|
|
std::vector<float> weights(3, 1);
|
|
|
|
if (weighted)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < inputs.size(); ++i)
|
|
|
|
weights[i] = -0.125f + i * 0.25f;
|
|
|
|
lp.set("coeff", DictValue::arrayReal<float*>(&weights[0], weights.size()));
|
|
|
|
}
|
|
|
|
|
|
|
|
int eltwiseId = net.addLayer(lp.name, lp.type, lp);
|
|
|
|
for (int i = 0; i < inputs.size(); ++i)
|
|
|
|
{
|
|
|
|
inputs[i].create(4, inpShapes[i], CV_32F);
|
|
|
|
size_t total = inputs[i].total();
|
|
|
|
for (size_t j = 0; j < total; j++)
|
|
|
|
inputs[i].ptr<float>()[j] = j + i * 100;
|
|
|
|
inpNames[i] = format("input_%d", i);
|
|
|
|
net.connect(0, i, eltwiseId, i);
|
|
|
|
}
|
|
|
|
Mat ref(4, inpShapes[0], CV_32F, Scalar(0));
|
|
|
|
|
|
|
|
net.setInputsNames(inpNames);
|
|
|
|
for (int i = 0; i < inputs.size(); ++i)
|
|
|
|
{
|
|
|
|
//std::cout << ref.reshape(1,1) << endl;
|
|
|
|
net.setInput(inputs[i], inpNames[i]);
|
|
|
|
for (size_t batchId = 0; batchId < ref.size[0]; batchId++)
|
|
|
|
{
|
|
|
|
int input_channels = inputs[i].size[1];
|
|
|
|
Range ranges[4] = { Range(batchId, batchId + 1), Range(0, std::min(out_channels, input_channels)), Range::all(), Range::all() };
|
|
|
|
Mat ref_slice = ref(ranges);
|
|
|
|
Mat input_slice = inputs[i](ranges);
|
|
|
|
ref_slice += weights[i] * input_slice;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
Mat out = net.forward();
|
|
|
|
normAssert(out, ref);
|
|
|
|
if (testing::Test::HasFailure())
|
|
|
|
{
|
|
|
|
std::cout << out.reshape(1,1) << endl;
|
|
|
|
std::cout << ref.reshape(1,1) << endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Eltwise_unequal, Combine(
|
|
|
|
testing::Bool(),
|
|
|
|
dnnBackendsAndTargets()
|
|
|
|
));
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<Backend, Target> > Layer_Test_Resize;
|
|
|
|
TEST_P(Layer_Test_Resize, change_input)
|
|
|
|
{
|
|
|
|
int backendId = get<0>(GetParam());
|
|
|
|
int targetId = get<1>(GetParam());
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Resize";
|
|
|
|
lp.name = "testLayer";
|
|
|
|
lp.set("zoom_factor", 2);
|
|
|
|
lp.set("interpolation", "nearest");
|
|
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
|
|
|
|
for (int i = 0; i < 2; ++i)
|
|
|
|
{
|
|
|
|
Mat inp(4 + i, 5 + i, CV_8UC3), ref;
|
|
|
|
randu(inp, 0, 255);
|
|
|
|
resize(inp, ref, Size(0, 0), 2, 2, INTER_NEAREST);
|
|
|
|
ref = blobFromImage(ref);
|
|
|
|
|
|
|
|
net.setInput(blobFromImage(inp));
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
Mat out = net.forward();
|
|
|
|
normAssert(out, ref);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Resize, dnnBackendsAndTargets());
|
|
|
|
|
|
|
|
struct Layer_Test_Slice : public testing::TestWithParam<tuple<Backend, Target> >
|
|
|
|
{
|
|
|
|
template<int DIMS>
|
|
|
|
void test_slice(const int* inputShape, const int* begin, const int* end)
|
|
|
|
{
|
|
|
|
int backendId = get<0>(GetParam());
|
|
|
|
int targetId = get<1>(GetParam());
|
|
|
|
|
|
|
|
Mat input(DIMS, inputShape, CV_32FC1, Scalar::all(0));
|
|
|
|
for (int i = 0; i < (int)input.total(); ++i)
|
|
|
|
input.ptr<float>()[i] = (float)i;
|
|
|
|
|
|
|
|
std::vector<Range> range(DIMS);
|
|
|
|
for (int i = 0; i < DIMS; ++i)
|
|
|
|
range[i] = Range(begin[i], end[i]);
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Slice";
|
|
|
|
lp.name = "testLayer";
|
|
|
|
lp.set("begin", DictValue::arrayInt<int*>((int*)&begin[0], DIMS));
|
|
|
|
lp.set("end", DictValue::arrayInt<int*>((int*)&end[0], DIMS));
|
|
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
|
|
|
|
{
|
|
|
|
net.setInput(input);
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
EXPECT_GT(cv::norm(out, NORM_INF), 0);
|
|
|
|
normAssert(out, input(range));
|
|
|
|
#if 0
|
|
|
|
cout << input(range).clone().reshape(1, 1) << endl;
|
|
|
|
cout << out.reshape(1, 1) << endl;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_P(Layer_Test_Slice, slice_channels_17762)
|
|
|
|
{
|
|
|
|
const int inputShape[4] = {1, 16, 6, 8};
|
|
|
|
const int begin[] = {0, 4, 0, 0};
|
|
|
|
const int end[] = {1, 8, 6, 8};
|
|
|
|
test_slice<4>(inputShape, begin, end);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Layer_Test_Slice, slice_channels_with_batch_17762)
|
|
|
|
{
|
|
|
|
const int inputShape[4] = {4, 4, 3, 4};
|
|
|
|
const int begin[] = {0, 1, 0, 0};
|
|
|
|
const int end[] = {4, 3, 3, 4};
|
|
|
|
test_slice<4>(inputShape, begin, end);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Layer_Test_Slice, slice_channels_and_batch_17762)
|
|
|
|
{
|
|
|
|
int backend = get<0>(GetParam());
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
|
|
|
|
const int inputShape[4] = {4, 4, 3, 4};
|
|
|
|
const int begin[] = {2, 1, 0, 0};
|
|
|
|
const int end[] = {4, 3, 3, 4};
|
|
|
|
test_slice<4>(inputShape, begin, end);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Layer_Test_Slice, slice_rows)
|
|
|
|
{
|
|
|
|
const int inputShape[4] = {1, 2, 6, 4};
|
|
|
|
const int begin[] = {0, 0, 4, 0};
|
|
|
|
const int end[] = {1, 2, 6, 4};
|
|
|
|
test_slice<4>(inputShape, begin, end);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Layer_Test_Slice, slice_cols)
|
|
|
|
{
|
|
|
|
const int inputShape[4] = {1, 2, 3, 8};
|
|
|
|
const int begin[] = {0, 0, 0, 4};
|
|
|
|
const int end[] = {1, 2, 3, 8};
|
|
|
|
test_slice<4>(inputShape, begin, end);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_P(Layer_Test_Slice, slice_complex_1_unaligned)
|
|
|
|
{
|
|
|
|
const int inputShape[4] = {1, 4, 2, 3};
|
|
|
|
const int begin[] = {0, 2, 1, 0};
|
|
|
|
const int end[] = {1, 3, 2, 2};
|
|
|
|
test_slice<4>(inputShape, begin, end);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Layer_Test_Slice, slice_complex_2_x4)
|
|
|
|
{
|
|
|
|
const int inputShape[4] = {1, 3, 2, 4};
|
|
|
|
const int begin[] = {0, 2, 1, 0};
|
|
|
|
const int end[] = {1, 3, 2, 2};
|
|
|
|
test_slice<4>(inputShape, begin, end);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Layer_Test_Slice, slice_complex_3)
|
|
|
|
{
|
|
|
|
const int inputShape[4] = {1, 6, 4, 8};
|
|
|
|
const int begin[] = {0, 2, 1, 4};
|
|
|
|
const int end[] = {1, 4, 3, 8};
|
|
|
|
test_slice<4>(inputShape, begin, end);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Layer_Test_Slice, variable_input_shape)
|
|
|
|
{
|
|
|
|
int backendId = get<0>(GetParam());
|
|
|
|
int targetId = get<1>(GetParam());
|
|
|
|
|
|
|
|
int begin[] = {0, 0, 0, 0};
|
|
|
|
int end[] = {-1, -1, -1, -1};
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Slice";
|
|
|
|
lp.name = "testLayer";
|
|
|
|
lp.set("begin", DictValue::arrayInt<int*>(&begin[0], 4));
|
|
|
|
lp.set("end", DictValue::arrayInt<int*>(&end[0], 4));
|
|
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
|
|
|
|
for (int i = 0; i < 2; ++i)
|
|
|
|
{
|
|
|
|
Mat inp(4 + i, 5 + i, CV_8UC1);
|
|
|
|
randu(inp, 0, 255);
|
|
|
|
inp = blobFromImage(inp);
|
|
|
|
|
|
|
|
net.setInput(inp);
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
normAssert(out, inp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Slice, dnnBackendsAndTargets());
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<Backend, Target> > Layer_Test_BatchNorm;
|
|
|
|
TEST_P(Layer_Test_BatchNorm, fusion)
|
|
|
|
{
|
|
|
|
// This tests reinitializes network by forwarding different batch size input.
|
|
|
|
// We check BatchNorm layer weights restoring after fusion.
|
|
|
|
int backendId = get<0>(GetParam());
|
|
|
|
int targetId = get<1>(GetParam());
|
|
|
|
const int ch = 4;
|
|
|
|
|
|
|
|
Mat mean(1, ch, CV_32F), var(1, ch, CV_32F), weights(1, ch, CV_32F);
|
|
|
|
randu(mean, 0, 1);
|
|
|
|
randu(var, 0, 1);
|
|
|
|
randu(weights, 0, 1);
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
{
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "BatchNorm";
|
|
|
|
lp.name = "bn";
|
|
|
|
lp.set("has_weight", false);
|
|
|
|
lp.set("has_bias", false);
|
|
|
|
lp.blobs.push_back(mean);
|
|
|
|
lp.blobs.push_back(var);
|
|
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
}
|
|
|
|
{
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Scale";
|
|
|
|
lp.name = "scale";
|
|
|
|
lp.set("has_bias", false);
|
|
|
|
lp.blobs.push_back(weights);
|
|
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat inp(4, 5, CV_32FC(ch));
|
|
|
|
randu(inp, 0, 1);
|
|
|
|
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
|
|
|
|
net.setInput(blobFromImage(inp));
|
|
|
|
Mat ref = net.forward();
|
|
|
|
|
|
|
|
net.setInput(blobFromImages(std::vector<Mat>(2, inp)));
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
for (int i = 0; i < 2; ++i)
|
|
|
|
{
|
|
|
|
std::vector<Range> ranges(4, Range::all());
|
|
|
|
ranges[0].start = i;
|
|
|
|
ranges[0].end = i + 1;
|
|
|
|
normAssert(out(ranges), ref);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_BatchNorm, dnnBackendsAndTargets());
|
|
|
|
|
|
|
|
class TestLayerFusion : public DNNTestLayer {
|
|
|
|
public:
|
|
|
|
static void makeDefaultTestConvolutionLayer(LayerParams& convParams, int in_channels, int num_filters, bool bias_term)
|
|
|
|
{
|
|
|
|
const int kernel_h = 3, kernel_w = 3;
|
|
|
|
const int pad_h = kernel_h / 2, pad_w = kernel_w / 2;
|
|
|
|
|
|
|
|
convParams.set("kernel_h", kernel_h);
|
|
|
|
convParams.set("kernel_w", kernel_w);
|
|
|
|
convParams.set("pad_h", pad_h);
|
|
|
|
convParams.set("pad_w", pad_w);
|
|
|
|
convParams.set("num_output", num_filters);
|
|
|
|
convParams.set("bias_term", bias_term);
|
|
|
|
convParams.type = "Convolution";
|
|
|
|
convParams.name = "convolution";
|
|
|
|
|
|
|
|
float conv_init_magnitude = 1.0f / in_channels / kernel_h / kernel_w;
|
|
|
|
int weightsShape[] = {num_filters, in_channels, kernel_h, kernel_w};
|
|
|
|
Mat weights(4, &weightsShape[0], CV_32F);
|
|
|
|
randu(weights, -conv_init_magnitude, conv_init_magnitude);
|
|
|
|
convParams.blobs.push_back(weights);
|
|
|
|
if (bias_term)
|
|
|
|
{
|
|
|
|
Mat bias(1, num_filters, CV_32F);
|
|
|
|
randu(bias, -1.0f, 1.0f);
|
|
|
|
convParams.blobs.push_back(bias);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void makeDefaultTestActivationLayer(LayerParams& activationParams, const std::string& type, int in_channels)
|
|
|
|
{
|
|
|
|
activationParams.type = type;
|
|
|
|
activationParams.name = "activation";
|
|
|
|
if (activationParams.type == "ReLU")
|
|
|
|
activationParams.set("negative_slope", 0.1f);
|
|
|
|
else if (activationParams.type == "Power")
|
|
|
|
{
|
|
|
|
activationParams.set("power", 2.0f);
|
|
|
|
activationParams.set("scale", 0.5f);
|
|
|
|
activationParams.set("shift", 0.3f);
|
|
|
|
}
|
|
|
|
else if (activationParams.type == "ReLU6")
|
|
|
|
{
|
|
|
|
activationParams.set("min_value", -1.0f);
|
|
|
|
activationParams.set("max_value", 1.0f);
|
|
|
|
}
|
|
|
|
else if (activationParams.type == "ChannelsPReLU")
|
|
|
|
{
|
|
|
|
Mat scales(1, in_channels, CV_32F);
|
|
|
|
randu(scales, -1.0f, 1.0f);
|
|
|
|
activationParams.blobs.push_back(scales);
|
|
|
|
}
|
|
|
|
else if (activationParams.type == "Exp")
|
|
|
|
{
|
|
|
|
activationParams.set("base", -1.0f);
|
|
|
|
activationParams.set("scale", 0.3f);
|
|
|
|
activationParams.set("shift", 0.6f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void makeDefaultTestEltwiseLayer(LayerParams& eltwiseParams, const std::string& op, bool withCoefficients)
|
|
|
|
{
|
|
|
|
eltwiseParams.type = "Eltwise";
|
|
|
|
eltwiseParams.name = "eltwise";
|
|
|
|
eltwiseParams.set("operation", op);
|
|
|
|
if (withCoefficients)
|
|
|
|
{
|
|
|
|
float coeff[] = {0.3f, 0.5f};
|
|
|
|
eltwiseParams.set("coeff", DictValue::arrayReal<float*>(coeff, 2));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test(Mat& input, Net& net, Backend backendId, Target targetId, std::vector<int> expectedFusedLayers = std::vector<int>(), double l1 = 0.0, double lInf = 0.0)
|
|
|
|
{
|
|
|
|
DNNTestLayer::checkBackend(backendId, targetId);
|
|
|
|
|
|
|
|
net.enableFusion(false);
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
|
|
net.setPreferableTarget(DNN_TARGET_CPU);
|
|
|
|
net.setInput(input);
|
|
|
|
Mat outputReference = net.forward().clone();
|
|
|
|
std::vector<double> refTimings;
|
|
|
|
net.getPerfProfile(refTimings);
|
|
|
|
for (int i = 0; i < refTimings.size(); i++)
|
|
|
|
{
|
|
|
|
CV_Assert(refTimings[i] != 0.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
net.enableFusion(true);
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
net.setInput(input);
|
|
|
|
Mat outputTest = net.forward().clone();
|
|
|
|
std::vector<double> testTimings;
|
|
|
|
net.getPerfProfile(testTimings);
|
|
|
|
for (int i = 0; i < testTimings.size(); i++)
|
|
|
|
{
|
|
|
|
if(std::find(expectedFusedLayers.begin(), expectedFusedLayers.end(), i + 1) != expectedFusedLayers.end())
|
|
|
|
{
|
|
|
|
EXPECT_EQ(testTimings[i], 0.0);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
EXPECT_NE(testTimings[i], 0.0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// double ref_max_value, ref_min_value;
|
|
|
|
// minMaxLoc(outputReference.reshape(1, 1), &ref_min_value, &ref_max_value);
|
|
|
|
// std::cout << "reference range: " << ref_min_value << ' ' << ref_max_value << std::endl;
|
|
|
|
|
|
|
|
double default_l1, default_lInf;
|
|
|
|
DNNTestLayer::getDefaultThresholds(backendId, targetId, &default_l1, &default_lInf);
|
|
|
|
if (l1 == 0.0)
|
|
|
|
l1 = default_l1;
|
|
|
|
if (lInf == 0.0)
|
|
|
|
lInf = default_lInf;
|
|
|
|
normAssert(outputReference, outputTest, "", l1, lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
static testing::internal::ParamGenerator<std::string> eltwiseOpList()
|
|
|
|
{
|
|
|
|
// TODO: automate list generation
|
|
|
|
return Values("sum", "max", "prod", "div");
|
|
|
|
}
|
|
|
|
|
|
|
|
static testing::internal::ParamGenerator<std::string> activationLayersList()
|
|
|
|
{
|
|
|
|
// TODO: automate list generation
|
|
|
|
return Values("ReLU", "ReLU6", "ChannelsPReLU", "TanH", "Swish", "Mish", "Sigmoid", "ELU", "AbsVal", "BNLL", "Power", "Exp");
|
|
|
|
}
|
|
|
|
|
|
|
|
static testing::internal::ParamGenerator<tuple<Backend, Target> > dnnBackendsAndTargetsForFusionTests()
|
|
|
|
{
|
|
|
|
return dnnBackendsAndTargets(false, false, true, false); // OCV OpenCL + OCV CPU
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef TestWithParam<tuple<bool, std::string, tuple<Backend, Target> > > ConvolutionActivationFusion;
|
|
|
|
TEST_P(ConvolutionActivationFusion, Accuracy)
|
|
|
|
{
|
|
|
|
// input
|
|
|
|
// |
|
|
|
|
// -----------------------
|
|
|
|
// | convolution |
|
|
|
|
// -----------------------
|
|
|
|
// |
|
|
|
|
// -----------------------
|
|
|
|
// | activation |
|
|
|
|
// -----------------------
|
|
|
|
// |
|
|
|
|
// output
|
|
|
|
|
|
|
|
const int batch_size = 2, in_channels = 16;
|
|
|
|
const int in_height = 16, in_width = 16;
|
|
|
|
int inputShape[] = {batch_size, in_channels, in_height, in_width};
|
|
|
|
Mat input(4, &inputShape[0], CV_32F);
|
|
|
|
randu(input, 1.0f, 2.0f);
|
|
|
|
|
|
|
|
bool bias_term = get<0>(GetParam());
|
|
|
|
LayerParams convParams;
|
|
|
|
TestLayerFusion::makeDefaultTestConvolutionLayer(convParams, in_channels, in_channels, bias_term);
|
|
|
|
|
|
|
|
std::string actType = get<1>(GetParam());
|
|
|
|
LayerParams activationParams;
|
|
|
|
TestLayerFusion::makeDefaultTestActivationLayer(activationParams, actType, in_channels);
|
|
|
|
|
|
|
|
Backend backendId = get<0>(get<2>(GetParam()));
|
|
|
|
Target targetId = get<1>(get<2>(GetParam()));
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
int convId = net.addLayer(convParams.name, convParams.type, convParams);
|
|
|
|
int activId = net.addLayerToPrev(activationParams.name, activationParams.type, activationParams);
|
|
|
|
net.connect(0, 0, convId, 0);
|
|
|
|
|
|
|
|
std::vector<int> expectedFusedLayers;
|
|
|
|
if (backendId == DNN_BACKEND_OPENCV)
|
|
|
|
{
|
|
|
|
if (targetId == DNN_TARGET_CPU)
|
|
|
|
expectedFusedLayers.push_back(activId); // all activations are fused
|
|
|
|
else if (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16)
|
|
|
|
{
|
|
|
|
if (actType == "ReLU" || actType == "ChannelsPReLU" || actType == "ReLU6" || actType == "TanH" /*|| actType == "Power"*/)
|
|
|
|
expectedFusedLayers.push_back(activId);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TestLayerFusion::test(input, net, backendId, targetId, expectedFusedLayers);
|
|
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(TestLayerFusion, ConvolutionActivationFusion, Combine(
|
|
|
|
/* bias */ testing::Bool(),
|
|
|
|
/* activation */ TestLayerFusion::activationLayersList(),
|
|
|
|
TestLayerFusion::dnnBackendsAndTargetsForFusionTests()
|
|
|
|
));
|
|
|
|
|
|
|
|
typedef TestWithParam<tuple<bool, std::string, bool, tuple<Backend, Target> > > ConvolutionEltwiseFusion;
|
|
|
|
TEST_P(ConvolutionEltwiseFusion, Accuracy)
|
|
|
|
{
|
|
|
|
// input
|
|
|
|
// |
|
|
|
|
// -------------------------------
|
|
|
|
// | |
|
|
|
|
// | ---------------
|
|
|
|
// | | convolution |
|
|
|
|
// | ---------------
|
|
|
|
// | |
|
|
|
|
// | ---------------- |
|
|
|
|
// --------| eltwise op |-------
|
|
|
|
// ----------------
|
|
|
|
// |
|
|
|
|
// output
|
|
|
|
|
|
|
|
const int batch_size = 2, in_channels = 16;
|
|
|
|
const int in_height = 16, in_width = 16;
|
|
|
|
int inputShape[] = {batch_size, in_channels, in_height, in_width};
|
|
|
|
Mat input(4, &inputShape[0], CV_32F);
|
|
|
|
randu(input, 1.0f, 2.0f); // avoid small values to test eltwise div
|
|
|
|
|
|
|
|
bool bias_term = get<0>(GetParam());
|
|
|
|
LayerParams convParams;
|
|
|
|
TestLayerFusion::makeDefaultTestConvolutionLayer(convParams, in_channels, in_channels, bias_term);
|
|
|
|
|
|
|
|
std::string eltwiseOp = get<1>(GetParam());
|
|
|
|
bool weightedEltwise = get<2>(GetParam());
|
|
|
|
if (eltwiseOp != "sum" && weightedEltwise)
|
|
|
|
throw SkipTestException("weighted eltwise not supported");
|
|
|
|
LayerParams eltwiseParams;
|
|
|
|
TestLayerFusion::makeDefaultTestEltwiseLayer(eltwiseParams, eltwiseOp, weightedEltwise);
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
int convId = net.addLayer(convParams.name, convParams.type, convParams);
|
|
|
|
int eltwiseId = net.addLayer(eltwiseParams.name, eltwiseParams.type, eltwiseParams);
|
|
|
|
net.connect(0, 0, convId, 0);
|
|
|
|
net.connect(convId, 0, eltwiseId, 0);
|
|
|
|
net.connect(0, 0, eltwiseId, 1);
|
|
|
|
|
|
|
|
Backend backendId = get<0>(get<3>(GetParam()));
|
|
|
|
Target targetId = get<1>(get<3>(GetParam()));
|
|
|
|
TestLayerFusion::test(input, net, backendId, targetId);
|
|
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(TestLayerFusion, ConvolutionEltwiseFusion, Combine(
|
|
|
|
/* bias */ testing::Bool(),
|
|
|
|
/* eltwise op */ TestLayerFusion::eltwiseOpList(),
|
|
|
|
/* eltwise weighted */ testing::Bool(),
|
|
|
|
TestLayerFusion::dnnBackendsAndTargetsForFusionTests()
|
|
|
|
));
|
|
|
|
|
|
|
|
typedef TestWithParam<tuple<bool, std::string, bool, std::string, tuple<Backend, Target> > > ConvolutionEltwiseActivationFusion;
|
|
|
|
TEST_P(ConvolutionEltwiseActivationFusion, Accuracy)
|
|
|
|
{
|
|
|
|
// input
|
|
|
|
// |
|
|
|
|
// -------------------------------
|
|
|
|
// | |
|
|
|
|
// | ---------------
|
|
|
|
// | | convolution |
|
|
|
|
// | ---------------
|
|
|
|
// | |
|
|
|
|
// | ---------------- |
|
|
|
|
// --------| eltwise op |-------
|
|
|
|
// ----------------
|
|
|
|
// |
|
|
|
|
// ----------------
|
|
|
|
// | activation |
|
|
|
|
// ----------------
|
|
|
|
// |
|
|
|
|
// output
|
|
|
|
|
|
|
|
const int batch_size = 2, in_channels = 16;
|
|
|
|
const int in_height = 16, in_width = 16;
|
|
|
|
int inputShape[] = {batch_size, in_channels, in_height, in_width};
|
|
|
|
Mat input(4, &inputShape[0], CV_32F);
|
|
|
|
randu(input, 1.0f, 2.0f); // avoid small values to test eltwise div
|
|
|
|
|
|
|
|
bool bias_term = get<0>(GetParam());
|
|
|
|
LayerParams convParams;
|
|
|
|
TestLayerFusion::makeDefaultTestConvolutionLayer(convParams, in_channels, in_channels, bias_term);
|
|
|
|
|
|
|
|
std::string eltwiseOp = get<1>(GetParam());
|
|
|
|
bool weightedEltwise = get<2>(GetParam());
|
|
|
|
if (eltwiseOp != "sum" && weightedEltwise)
|
|
|
|
throw SkipTestException("weighted eltwise not supported");
|
|
|
|
LayerParams eltwiseParams;
|
|
|
|
TestLayerFusion::makeDefaultTestEltwiseLayer(eltwiseParams, eltwiseOp, weightedEltwise);
|
|
|
|
|
|
|
|
std::string actType = get<3>(GetParam());
|
|
|
|
LayerParams activationParams;
|
|
|
|
TestLayerFusion::makeDefaultTestActivationLayer(activationParams, actType, in_channels);
|
|
|
|
|
|
|
|
Backend backendId = get<0>(get<4>(GetParam()));
|
|
|
|
Target targetId = get<1>(get<4>(GetParam()));
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
int convId = net.addLayer(convParams.name, convParams.type, convParams);
|
|
|
|
int eltwiseId = net.addLayer(eltwiseParams.name, eltwiseParams.type, eltwiseParams);
|
|
|
|
int activId = net.addLayer(activationParams.name, activationParams.type, activationParams);
|
|
|
|
net.connect(0, 0, convId, 0);
|
|
|
|
net.connect(convId, 0, eltwiseId, 0);
|
|
|
|
net.connect(0, 0, eltwiseId, 1);
|
|
|
|
net.connect(eltwiseId, 0, activId, 0);
|
|
|
|
|
|
|
|
std::vector<int> expectedFusedLayers;
|
|
|
|
if (backendId == DNN_BACKEND_OPENCV)
|
|
|
|
{
|
|
|
|
if (targetId == DNN_TARGET_CPU)
|
|
|
|
expectedFusedLayers.push_back(activId); // activation is fused with eltwise layer
|
|
|
|
else if (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16)
|
|
|
|
{
|
|
|
|
if (eltwiseOp == "sum" && !weightedEltwise &&
|
|
|
|
(actType == "ReLU" || actType == "ChannelsPReLU" /*|| actType == "Power"*/)
|
|
|
|
)
|
|
|
|
{
|
|
|
|
expectedFusedLayers.push_back(eltwiseId);
|
|
|
|
expectedFusedLayers.push_back(activId);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TestLayerFusion::test(input, net, backendId, targetId, expectedFusedLayers);
|
|
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(TestLayerFusion, ConvolutionEltwiseActivationFusion, Combine(
|
|
|
|
/* bias */ testing::Bool(),
|
|
|
|
/* eltwise op */ TestLayerFusion::eltwiseOpList(),
|
|
|
|
/* eltwise weighted */ testing::Bool(),
|
|
|
|
/* activation */ TestLayerFusion::activationLayersList(),
|
|
|
|
TestLayerFusion::dnnBackendsAndTargetsForFusionTests()
|
|
|
|
));
|
|
|
|
|
|
|
|
typedef TestWithParam<tuple<bool, std::string, std::string, bool, tuple<Backend, Target> > > ConvolutionActivationEltwiseFusion;
|
|
|
|
TEST_P(ConvolutionActivationEltwiseFusion, Accuracy)
|
|
|
|
{
|
|
|
|
// input
|
|
|
|
// |
|
|
|
|
// -------------------------------
|
|
|
|
// | |
|
|
|
|
// | ----------------
|
|
|
|
// | | convolution |
|
|
|
|
// | ----------------
|
|
|
|
// | |
|
|
|
|
// | ----------------
|
|
|
|
// | | activation |
|
|
|
|
// | ----------------
|
|
|
|
// | |
|
|
|
|
// | ---------------- |
|
|
|
|
// --------| eltwise sum |-------
|
|
|
|
// ----------------
|
|
|
|
// |
|
|
|
|
|
|
|
|
const int batch_size = 2, in_channels = 16;
|
|
|
|
const int in_height = 16, in_width = 16;
|
|
|
|
int inputShape[] = {batch_size, in_channels, in_height, in_width};
|
|
|
|
Mat input(4, &inputShape[0], CV_32F);
|
|
|
|
randu(input, 1.0f, 2.0f); // avoid small values to test eltwise div
|
|
|
|
|
|
|
|
bool bias_term = get<0>(GetParam());
|
|
|
|
LayerParams convParams;
|
|
|
|
TestLayerFusion::makeDefaultTestConvolutionLayer(convParams, in_channels, in_channels, bias_term);
|
|
|
|
|
|
|
|
std::string actType = get<1>(GetParam());
|
|
|
|
LayerParams activationParams;
|
|
|
|
TestLayerFusion::makeDefaultTestActivationLayer(activationParams, actType, in_channels);
|
|
|
|
|
|
|
|
std::string eltwiseOp = get<2>(GetParam());
|
|
|
|
bool weightedEltwise = get<3>(GetParam());
|
|
|
|
if (eltwiseOp != "sum" && weightedEltwise)
|
|
|
|
throw SkipTestException("weighted eltwise not supported");
|
|
|
|
LayerParams eltwiseParams;
|
|
|
|
TestLayerFusion::makeDefaultTestEltwiseLayer(eltwiseParams, eltwiseOp, weightedEltwise);
|
|
|
|
|
|
|
|
Backend backendId = get<0>(get<4>(GetParam()));
|
|
|
|
Target targetId = get<1>(get<4>(GetParam()));
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
int convId = net.addLayer(convParams.name, convParams.type, convParams);
|
|
|
|
int activId = net.addLayer(activationParams.name, activationParams.type, activationParams);
|
|
|
|
int eltwiseId = net.addLayer(eltwiseParams.name, eltwiseParams.type, eltwiseParams);
|
|
|
|
net.connect(0, 0, convId, 0);
|
|
|
|
net.connect(convId, 0, activId, 0);
|
|
|
|
net.connect(activId, 0, eltwiseId, 0);
|
|
|
|
net.connect(0, 0, eltwiseId, 1);
|
|
|
|
|
|
|
|
std::vector<int> expectedFusedLayers;
|
|
|
|
if (backendId == DNN_BACKEND_OPENCV)
|
|
|
|
{
|
|
|
|
if (targetId == DNN_TARGET_CPU)
|
|
|
|
expectedFusedLayers.push_back(activId); // activation fused with convolution
|
|
|
|
else if (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16)
|
|
|
|
{
|
|
|
|
if (actType == "ReLU" || actType == "ChannelsPReLU" || actType == "ReLU6" || actType == "TanH" /*|| actType == "Power"*/)
|
|
|
|
expectedFusedLayers.push_back(activId); // activation fused with convolution
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TestLayerFusion::test(input, net, backendId, targetId, expectedFusedLayers);
|
|
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(TestLayerFusion, ConvolutionActivationEltwiseFusion, Combine(
|
|
|
|
/* bias */ testing::Bool(),
|
|
|
|
/* activation */ TestLayerFusion::activationLayersList(),
|
|
|
|
/* eltwise op */ TestLayerFusion::eltwiseOpList(),
|
|
|
|
/* eltwise weighted */ testing::Bool(),
|
|
|
|
TestLayerFusion::dnnBackendsAndTargetsForFusionTests()
|
|
|
|
));
|
|
|
|
|
|
|
|
}} // namespace
|