Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

212 lines
8.3 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "warpers.hpp"
using namespace std;
using namespace cv;
Ptr<Warper> Warper::createByCameraFocal(float focal, int type, bool try_gpu)
{
bool can_use_gpu = try_gpu && gpu::getCudaEnabledDeviceCount();
if (type == PLANE)
return !can_use_gpu ? new PlaneWarper(focal) : new PlaneWarperGpu(focal);
if (type == CYLINDRICAL)
return !can_use_gpu ? new CylindricalWarper(focal) : new CylindricalWarperGpu(focal);
if (type == SPHERICAL)
return !can_use_gpu ? new SphericalWarper(focal) : new SphericalWarperGpu(focal);
CV_Error(CV_StsBadArg, "unsupported warping type");
return NULL;
}
void ProjectorBase::setTransformation(const Mat &R)
{
CV_Assert(R.size() == Size(3, 3));
CV_Assert(R.type() == CV_32F);
r[0] = R.at<float>(0, 0); r[1] = R.at<float>(0, 1); r[2] = R.at<float>(0, 2);
r[3] = R.at<float>(1, 0); r[4] = R.at<float>(1, 1); r[5] = R.at<float>(1, 2);
r[6] = R.at<float>(2, 0); r[7] = R.at<float>(2, 1); r[8] = R.at<float>(2, 2);
Mat Rinv = R.inv();
rinv[0] = Rinv.at<float>(0, 0); rinv[1] = Rinv.at<float>(0, 1); rinv[2] = Rinv.at<float>(0, 2);
rinv[3] = Rinv.at<float>(1, 0); rinv[4] = Rinv.at<float>(1, 1); rinv[5] = Rinv.at<float>(1, 2);
rinv[6] = Rinv.at<float>(2, 0); rinv[7] = Rinv.at<float>(2, 1); rinv[8] = Rinv.at<float>(2, 2);
}
void PlaneWarper::detectResultRoi(Point &dst_tl, Point &dst_br)
{
float tl_uf = numeric_limits<float>::max();
float tl_vf = numeric_limits<float>::max();
float br_uf = -numeric_limits<float>::max();
float br_vf = -numeric_limits<float>::max();
float u, v;
projector_.mapForward(0, 0, u, v);
tl_uf = min(tl_uf, u); tl_vf = min(tl_vf, v);
br_uf = max(br_uf, u); br_vf = max(br_vf, v);
projector_.mapForward(0, static_cast<float>(src_size_.height - 1), u, v);
tl_uf = min(tl_uf, u); tl_vf = min(tl_vf, v);
br_uf = max(br_uf, u); br_vf = max(br_vf, v);
projector_.mapForward(static_cast<float>(src_size_.width - 1), 0, u, v);
tl_uf = min(tl_uf, u); tl_vf = min(tl_vf, v);
br_uf = max(br_uf, u); br_vf = max(br_vf, v);
projector_.mapForward(static_cast<float>(src_size_.width - 1), static_cast<float>(src_size_.height - 1), u, v);
tl_uf = min(tl_uf, u); tl_vf = min(tl_vf, v);
br_uf = max(br_uf, u); br_vf = max(br_vf, v);
dst_tl.x = static_cast<int>(tl_uf);
dst_tl.y = static_cast<int>(tl_vf);
dst_br.x = static_cast<int>(br_uf);
dst_br.y = static_cast<int>(br_vf);
}
Point PlaneWarperGpu::warp(const Mat &src, float focal, const cv::Mat &R, cv::Mat &dst, int interp_mode, int border_mode)
{
src_size_ = src.size();
projector_.size = src.size();
projector_.focal = focal;
projector_.setTransformation(R);
cv::Point dst_tl, dst_br;
detectResultRoi(dst_tl, dst_br);
gpu::buildWarpPlaneMaps(src.size(), Rect(dst_tl, Point(dst_br.x+1, dst_br.y+1)),
R, focal, projector_.scale, projector_.plane_dist, d_xmap_, d_ymap_);
dst.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, src.type());
remap(src, dst, Mat(d_xmap_), Mat(d_ymap_), interp_mode, border_mode);
return dst_tl;
}
void SphericalWarper::detectResultRoi(Point &dst_tl, Point &dst_br)
{
detectResultRoiByBorder(dst_tl, dst_br);
float tl_uf = static_cast<float>(dst_tl.x);
float tl_vf = static_cast<float>(dst_tl.y);
float br_uf = static_cast<float>(dst_br.x);
float br_vf = static_cast<float>(dst_br.y);
float x = projector_.rinv[1];
float y = projector_.rinv[4];
float z = projector_.rinv[7];
if (y > 0.f)
{
x = projector_.focal * x / z + src_size_.width * 0.5f;
y = projector_.focal * y / z + src_size_.height * 0.5f;
if (x > 0.f && x < src_size_.width && y > 0.f && y < src_size_.height)
{
tl_uf = min(tl_uf, 0.f); tl_vf = min(tl_vf, static_cast<float>(CV_PI * projector_.scale));
br_uf = max(br_uf, 0.f); br_vf = max(br_vf, static_cast<float>(CV_PI * projector_.scale));
}
}
x = projector_.rinv[1];
y = -projector_.rinv[4];
z = projector_.rinv[7];
if (y > 0.f)
{
x = projector_.focal * x / z + src_size_.width * 0.5f;
y = projector_.focal * y / z + src_size_.height * 0.5f;
if (x > 0.f && x < src_size_.width && y > 0.f && y < src_size_.height)
{
tl_uf = min(tl_uf, 0.f); tl_vf = min(tl_vf, static_cast<float>(0));
br_uf = max(br_uf, 0.f); br_vf = max(br_vf, static_cast<float>(0));
}
}
dst_tl.x = static_cast<int>(tl_uf);
dst_tl.y = static_cast<int>(tl_vf);
dst_br.x = static_cast<int>(br_uf);
dst_br.y = static_cast<int>(br_vf);
}
Point SphericalWarperGpu::warp(const Mat &src, float focal, const Mat &R, Mat &dst,
int interp_mode, int border_mode)
{
src_size_ = src.size();
projector_.size = src.size();
projector_.focal = focal;
projector_.setTransformation(R);
cv::Point dst_tl, dst_br;
detectResultRoi(dst_tl, dst_br);
gpu::buildWarpSphericalMaps(src.size(), Rect(dst_tl, Point(dst_br.x+1, dst_br.y+1)),
R, focal, projector_.scale, d_xmap_, d_ymap_);
dst.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, src.type());
remap(src, dst, Mat(d_xmap_), Mat(d_ymap_), interp_mode, border_mode);
return dst_tl;
}
Point CylindricalWarperGpu::warp(const Mat &src, float focal, const Mat &R, Mat &dst,
int interp_mode, int border_mode)
{
src_size_ = src.size();
projector_.size = src.size();
projector_.focal = focal;
projector_.setTransformation(R);
cv::Point dst_tl, dst_br;
detectResultRoi(dst_tl, dst_br);
gpu::buildWarpCylindricalMaps(src.size(), Rect(dst_tl, Point(dst_br.x+1, dst_br.y+1)),
R, focal, projector_.scale, d_xmap_, d_ymap_);
dst.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, src.type());
remap(src, dst, Mat(d_xmap_), Mat(d_ymap_), interp_mode, border_mode);
return dst_tl;
}