Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

751 lines
24 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifdef HAVE_OPENEXR
#if defined _MSC_VER && _MSC_VER >= 1200
# pragma warning( disable: 4100 4244 4267 )
#endif
#if defined __GNUC__ && defined __APPLE__
# pragma GCC diagnostic ignored "-Wshadow"
#endif
/// C++ Standard Libraries
#include <iostream>
#include <stdexcept>
#include <ImfFrameBuffer.h>
#include <ImfHeader.h>
#include <ImfInputFile.h>
#include <ImfOutputFile.h>
#include <ImfChannelList.h>
#include <ImfStandardAttributes.h>
#include <half.h>
#include "grfmt_exr.hpp"
#include "OpenEXRConfig.h"
#if defined _WIN32
#undef UINT
#define UINT ((Imf::PixelType)0)
#undef HALF
#define HALF ((Imf::PixelType)1)
#undef FLOAT
#define FLOAT ((Imf::PixelType)2)
#endif
namespace cv
{
/////////////////////// ExrDecoder ///////////////////
ExrDecoder::ExrDecoder()
{
m_signature = "\x76\x2f\x31\x01";
m_file = 0;
m_red = m_green = m_blue = m_alpha = 0;
m_type = ((Imf::PixelType)0);
m_iscolor = false;
m_bit_depth = 0;
m_isfloat = false;
m_ischroma = false;
m_hasalpha = false;
m_native_depth = false;
}
ExrDecoder::~ExrDecoder()
{
close();
}
void ExrDecoder::close()
{
if( m_file )
{
delete m_file;
m_file = 0;
}
}
int ExrDecoder::type() const
{
return CV_MAKETYPE((m_isfloat ? CV_32F : CV_32S), ((m_iscolor && m_hasalpha) ? 4 : m_iscolor ? 3 : m_hasalpha ? 2 : 1));
}
bool ExrDecoder::readHeader()
{
bool result = false;
m_file = new InputFile( m_filename.c_str() );
if( !m_file ) // probably paranoid
return false;
m_datawindow = m_file->header().dataWindow();
m_width = m_datawindow.max.x - m_datawindow.min.x + 1;
m_height = m_datawindow.max.y - m_datawindow.min.y + 1;
// the type HALF is converted to 32 bit float
// and the other types supported by OpenEXR are 32 bit anyway
m_bit_depth = 32;
if( hasChromaticities( m_file->header() ))
m_chroma = chromaticities( m_file->header() );
const ChannelList &channels = m_file->header().channels();
m_red = channels.findChannel( "R" );
m_green = channels.findChannel( "G" );
m_blue = channels.findChannel( "B" );
m_alpha = channels.findChannel( "A" );
if( m_alpha ) // alpha channel supported in RGB, Y, and YC scenarios
m_hasalpha = true;
if( m_red || m_green || m_blue )
{
m_iscolor = true;
m_ischroma = false;
result = true;
}
else
{
m_green = channels.findChannel( "Y" );
if( !m_green )
{
m_green = channels.findChannel( "Z" ); // Distance of the front of a sample from the viewer
}
if( m_green )
{
m_ischroma = true;
m_red = channels.findChannel( "RY" );
m_blue = channels.findChannel( "BY" );
m_iscolor = (m_blue || m_red);
result = true;
}
else
result = false;
}
if( result )
{
m_type = FLOAT;
m_isfloat = ( m_type == FLOAT );
}
if( !result )
close();
return result;
}
bool ExrDecoder::readData( Mat& img )
{
m_native_depth = CV_MAT_DEPTH(type()) == img.depth();
bool color = img.channels() > 2; // output mat has 3+ channels; Y or YA are the 1 and 2 channel scenario
bool alphasupported = ( img.channels() % 2 == 0 ); // even number of channels indicates alpha
int channels = 0;
uchar* data = img.ptr();
size_t step = img.step;
bool justcopy = ( m_native_depth && (color == m_iscolor) );
bool chromatorgb = ( m_ischroma && color );
bool rgbtogray = ( !m_ischroma && m_iscolor && !color );
bool result = true;
FrameBuffer frame;
const int defaultchannels = 3;
int xsample[defaultchannels] = {1, 1, 1};
char *buffer;
CV_Assert(m_type == FLOAT);
const size_t floatsize = sizeof(float);
size_t xstep = m_native_depth ? floatsize : 1; // 4 bytes if native depth (FLOAT), otherwise converting to 1 byte U8 depth
size_t ystep = 0;
const int channelstoread = ( (m_iscolor && alphasupported) ? 4 :
( (m_iscolor && !m_ischroma) || color) ? 3 : alphasupported ? 2 : 1 ); // number of channels to read may exceed channels in output img
size_t xStride = floatsize * channelstoread;
AutoBuffer<char> copy_buffer;
if( !justcopy )
{
copy_buffer.allocate(floatsize * m_width * defaultchannels);
buffer = copy_buffer.data();
ystep = 0;
}
else
{
buffer = (char *)data;
ystep = step;
}
if( m_ischroma )
{
if( color )
{
if( m_blue )
{
frame.insert( "BY", Slice( m_type,
buffer - m_datawindow.min.x * xStride - m_datawindow.min.y * ystep,
xStride, ystep, m_blue->xSampling, m_blue->ySampling, 0.0 ));
xsample[0] = m_blue->xSampling;
}
else
{
frame.insert( "BY", Slice( m_type,
buffer - m_datawindow.min.x * xStride - m_datawindow.min.y * ystep,
xStride, ystep, 1, 1, 0.0 ));
}
if( m_green )
{
frame.insert( "Y", Slice( m_type,
buffer - m_datawindow.min.x * xStride - m_datawindow.min.y * ystep + floatsize,
xStride, ystep, m_green->xSampling, m_green->ySampling, 0.0 ));
xsample[1] = m_green->xSampling;
}
else
{
frame.insert( "Y", Slice( m_type,
buffer - m_datawindow.min.x * xStride - m_datawindow.min.y * ystep + floatsize,
xStride, ystep, 1, 1, 0.0 ));
}
if( m_red )
{
frame.insert( "RY", Slice( m_type,
buffer - m_datawindow.min.x * xStride - m_datawindow.min.y * ystep + (floatsize * 2),
xStride, ystep, m_red->xSampling, m_red->ySampling, 0.0 ));
xsample[2] = m_red->xSampling;
}
else
{
frame.insert( "RY", Slice( m_type,
buffer - m_datawindow.min.x * xStride - m_datawindow.min.y * ystep + (floatsize * 2),
xStride, ystep, 1, 1, 0.0 ));
}
}
else
{
frame.insert( "Y", Slice( m_type,
buffer - m_datawindow.min.x * xStride - m_datawindow.min.y * ystep,
xStride, ystep, m_green->xSampling, m_green->ySampling, 0.0 ));
xsample[0] = m_green->xSampling;
}
}
else
{
if( m_blue )
{
frame.insert( "B", Slice( m_type,
buffer - m_datawindow.min.x * xStride - m_datawindow.min.y * ystep,
xStride, ystep, m_blue->xSampling, m_blue->ySampling, 0.0 ));
xsample[0] = m_blue->xSampling;
}
else
{
frame.insert( "B", Slice( m_type,
buffer - m_datawindow.min.x * xStride - m_datawindow.min.y * ystep,
xStride, ystep, 1, 1, 0.0 ));
}
if( m_green )
{
frame.insert( "G", Slice( m_type,
buffer - m_datawindow.min.x * xStride - m_datawindow.min.y * ystep + floatsize,
xStride, ystep, m_green->xSampling, m_green->ySampling, 0.0 ));
xsample[1] = m_green->xSampling;
}
else
{
frame.insert( "G", Slice( m_type,
buffer - m_datawindow.min.x * xStride - m_datawindow.min.y * ystep + floatsize,
xStride, ystep, 1, 1, 0.0 ));
}
if( m_red )
{
frame.insert( "R", Slice( m_type,
buffer - m_datawindow.min.x * xStride - m_datawindow.min.y * ystep + (floatsize * 2),
xStride, ystep, m_red->xSampling, m_red->ySampling, 0.0 ));
xsample[2] = m_red->xSampling;
}
else
{
frame.insert( "R", Slice( m_type,
buffer - m_datawindow.min.x * xStride - m_datawindow.min.y * ystep + (floatsize * 2),
xStride, ystep, 1, 1, 0.0 ));
}
}
if( justcopy && m_hasalpha && alphasupported )
{ // alpha preserved only in justcopy scenario where alpha is desired (alphasupported)
// and present in original file (m_hasalpha)
CV_Assert(channelstoread == img.channels());
int offset = (channelstoread - 1) * floatsize;
frame.insert( "A", Slice( m_type,
buffer - m_datawindow.min.x * xStride - m_datawindow.min.y * ystep + offset,
xStride, ystep, m_alpha->xSampling, m_alpha->ySampling, 0.0 ));
}
for (FrameBuffer::Iterator it = frame.begin(); it != frame.end(); it++) {
channels++;
}
CV_Assert(channels == channelstoread);
if( (channels != channelstoread) || (!justcopy && channels > defaultchannels) )
{ // safety checking what ought to be true here
close();
return false;
}
m_file->setFrameBuffer( frame );
if( justcopy )
{
m_file->readPixels( m_datawindow.min.y, m_datawindow.max.y );
if( m_iscolor )
{
if( m_blue && (m_blue->xSampling != 1 || m_blue->ySampling != 1) )
UpSample( data, channelstoread, step / xstep, m_blue->xSampling, m_blue->ySampling );
if( m_green && (m_green->xSampling != 1 || m_green->ySampling != 1) )
UpSample( data + xstep, channelstoread, step / xstep, m_green->xSampling, m_green->ySampling );
if( m_red && (m_red->xSampling != 1 || m_red->ySampling != 1) )
UpSample( data + 2 * xstep, channelstoread, step / xstep, m_red->xSampling, m_red->ySampling );
}
else if( m_green && (m_green->xSampling != 1 || m_green->ySampling != 1) )
UpSample( data, channelstoread, step / xstep, m_green->xSampling, m_green->ySampling );
if( chromatorgb )
ChromaToBGR( (float *)data, m_height, channelstoread, step / xstep );
}
else
{
uchar *out = data;
int x, y;
for( y = m_datawindow.min.y; y <= m_datawindow.max.y; y++ )
{
m_file->readPixels( y, y );
for( int i = 0; i < channels; i++ )
{
if( xsample[i] != 1 )
UpSampleX( (float *)buffer + i, channels, xsample[i] );
}
if( rgbtogray )
{
RGBToGray( (float *)buffer, (float *)out );
}
else
{
if( chromatorgb )
ChromaToBGR( (float *)buffer, 1, defaultchannels, step );
if( m_type == FLOAT )
{
float *fi = (float *)buffer;
for( x = 0; x < m_width * img.channels(); x++)
{
out[x] = cv::saturate_cast<uchar>(fi[x]);
}
}
else
{
unsigned *ui = (unsigned *)buffer;
for( x = 0; x < m_width * img.channels(); x++)
{
out[x] = cv::saturate_cast<uchar>(ui[x]);
}
}
}
out += step;
}
if( color )
{
if( m_blue && (m_blue->xSampling != 1 || m_blue->ySampling != 1) )
UpSampleY( data, defaultchannels, step / xstep, m_blue->ySampling );
if( m_green && (m_green->xSampling != 1 || m_green->ySampling != 1) )
UpSampleY( data + xstep, defaultchannels, step / xstep, m_green->ySampling );
if( m_red && (m_red->xSampling != 1 || m_red->ySampling != 1) )
UpSampleY( data + 2 * xstep, defaultchannels, step / xstep, m_red->ySampling );
}
else if( m_green && (m_green->xSampling != 1 || m_green->ySampling != 1) )
UpSampleY( data, 1, step / xstep, m_green->ySampling );
}
close();
return result;
}
/**
// on entry pixel values are stored packed in the upper left corner of the image
// this functions expands them by duplication to cover the whole image
*/
void ExrDecoder::UpSample( uchar *data, int xstep, int ystep, int xsample, int ysample )
{
for( int y = (m_height - 1) / ysample, yre = m_height - ysample; y >= 0; y--, yre -= ysample )
{
for( int x = (m_width - 1) / xsample, xre = m_width - xsample; x >= 0; x--, xre -= xsample )
{
for( int i = 0; i < ysample; i++ )
{
for( int n = 0; n < xsample; n++ )
{
if( !m_native_depth )
data[(yre + i) * ystep + (xre + n) * xstep] = data[y * ystep + x * xstep];
else if( m_type == FLOAT )
((float *)data)[(yre + i) * ystep + (xre + n) * xstep] = ((float *)data)[y * ystep + x * xstep];
else
((unsigned *)data)[(yre + i) * ystep + (xre + n) * xstep] = ((unsigned *)data)[y * ystep + x * xstep];
}
}
}
}
}
/**
// on entry pixel values are stored packed in the upper left corner of the image
// this functions expands them by duplication to cover the whole image
*/
void ExrDecoder::UpSampleX( float *data, int xstep, int xsample )
{
for( int x = (m_width - 1) / xsample, xre = m_width - xsample; x >= 0; x--, xre -= xsample )
{
for( int n = 0; n < xsample; n++ )
{
if( m_type == FLOAT )
((float *)data)[(xre + n) * xstep] = ((float *)data)[x * xstep];
else
((unsigned *)data)[(xre + n) * xstep] = ((unsigned *)data)[x * xstep];
}
}
}
/**
// on entry pixel values are stored packed in the upper left corner of the image
// this functions expands them by duplication to cover the whole image
*/
void ExrDecoder::UpSampleY( uchar *data, int xstep, int ystep, int ysample )
{
for( int y = m_height - ysample, yre = m_height - ysample; y >= 0; y -= ysample, yre -= ysample )
{
for( int x = 0; x < m_width; x++ )
{
for( int i = 1; i < ysample; i++ )
{
if( !m_native_depth )
data[(yre + i) * ystep + x * xstep] = data[y * ystep + x * xstep];
else if( m_type == FLOAT )
((float *)data)[(yre + i) * ystep + x * xstep] = ((float *)data)[y * ystep + x * xstep];
else
((unsigned *)data)[(yre + i) * ystep + x * xstep] = ((unsigned *)data)[y * ystep + x * xstep];
}
}
}
}
/**
// algorithm from ImfRgbaYca.cpp
*/
void ExrDecoder::ChromaToBGR( float *data, int numlines, int xstep, int ystep )
{
for( int y = 0; y < numlines; y++ )
{
for( int x = 0; x < m_width; x++ )
{
double b, Y, r;
if( m_type == FLOAT )
{
b = data[y * ystep + x * xstep];
Y = data[y * ystep + x * xstep + 1];
r = data[y * ystep + x * xstep + 2];
}
else
{
b = ((unsigned *)data)[y * ystep + x * xstep];
Y = ((unsigned *)data)[y * ystep + x * xstep + 1];
r = ((unsigned *)data)[y * ystep + x * xstep + 2];
}
r = (r + 1) * Y;
b = (b + 1) * Y;
Y = (Y - b * m_chroma.blue[1] - r * m_chroma.red[1]) / m_chroma.green[1];
if( m_type == FLOAT )
{
data[y * ystep + x * xstep] = (float)b;
data[y * ystep + x * xstep + 1] = (float)Y;
data[y * ystep + x * xstep + 2] = (float)r;
}
else
{
int t = cvRound(b);
((unsigned *)data)[y * ystep + x * xstep + 0] = (unsigned)MAX(t, 0);
t = cvRound(Y);
((unsigned *)data)[y * ystep + x * xstep + 1] = (unsigned)MAX(t, 0);
t = cvRound(r);
((unsigned *)data)[y * ystep + x * xstep + 2] = (unsigned)MAX(t, 0);
}
}
}
}
/**
// convert one row to gray
*/
void ExrDecoder::RGBToGray( float *in, float *out )
{
if( m_type == FLOAT )
{
if( m_native_depth )
{
for( int i = 0, n = 0; i < m_width; i++, n += 3 )
out[i] = in[n] * m_chroma.blue[0] + in[n + 1] * m_chroma.green[0] + in[n + 2] * m_chroma.red[0];
}
else
{
uchar *o = (uchar *)out;
for( int i = 0, n = 0; i < m_width; i++, n += 3 )
o[i] = (uchar) (in[n] * m_chroma.blue[0] + in[n + 1] * m_chroma.green[0] + in[n + 2] * m_chroma.red[0]);
}
}
else // UINT
{
if( m_native_depth )
{
unsigned *ui = (unsigned *)in;
for( int i = 0; i < m_width * 3; i++ )
ui[i] -= 0x80000000;
int *si = (int *)in;
for( int i = 0, n = 0; i < m_width; i++, n += 3 )
((int *)out)[i] = int(si[n] * m_chroma.blue[0] + si[n + 1] * m_chroma.green[0] + si[n + 2] * m_chroma.red[0]);
}
else // how to best convert float to uchar?
{
unsigned *ui = (unsigned *)in;
for( int i = 0, n = 0; i < m_width; i++, n += 3 )
((uchar *)out)[i] = uchar((ui[n] * m_chroma.blue[0] + ui[n + 1] * m_chroma.green[0] + ui[n + 2] * m_chroma.red[0]) * (256.0 / 4294967296.0));
}
}
}
ImageDecoder ExrDecoder::newDecoder() const
{
return makePtr<ExrDecoder>();
}
/////////////////////// ExrEncoder ///////////////////
ExrEncoder::ExrEncoder()
{
m_description = "OpenEXR Image files (*.exr)";
}
ExrEncoder::~ExrEncoder()
{
}
bool ExrEncoder::isFormatSupported( int depth ) const
{
return ( CV_MAT_DEPTH(depth) == CV_32F );
}
bool ExrEncoder::write( const Mat& img, const std::vector<int>& params )
{
int width = img.cols, height = img.rows;
int depth = img.depth();
CV_Assert( depth == CV_32F );
int channels = img.channels();
bool result = false;
Header header( width, height );
Imf::PixelType type = FLOAT;
for( size_t i = 0; i < params.size(); i += 2 )
{
if( params[i] == CV_IMWRITE_EXR_TYPE )
{
switch( params[i+1] )
{
case IMWRITE_EXR_TYPE_HALF:
type = HALF;
break;
case IMWRITE_EXR_TYPE_FLOAT:
type = FLOAT;
break;
default:
CV_Error(Error::StsBadArg, "IMWRITE_EXR_TYPE is invalid or not supported");
}
}
if ( params[i] == IMWRITE_EXR_COMPRESSION )
{
switch ( params[i + 1] )
{
case IMWRITE_EXR_COMPRESSION_NO:
header.compression() = NO_COMPRESSION;
break;
case IMWRITE_EXR_COMPRESSION_RLE:
header.compression() = RLE_COMPRESSION;
break;
case IMWRITE_EXR_COMPRESSION_ZIPS:
header.compression() = ZIPS_COMPRESSION;
break;
case IMWRITE_EXR_COMPRESSION_ZIP:
header.compression() = ZIP_COMPRESSION;
break;
case IMWRITE_EXR_COMPRESSION_PIZ:
header.compression() = PIZ_COMPRESSION;
break;
case IMWRITE_EXR_COMPRESSION_PXR24:
header.compression() = PXR24_COMPRESSION;
break;
case IMWRITE_EXR_COMPRESSION_B44:
header.compression() = B44_COMPRESSION;
break;
case IMWRITE_EXR_COMPRESSION_B44A:
header.compression() = B44A_COMPRESSION;
break;
#if ((OPENEXR_VERSION_MAJOR * 1000 + OPENEXR_VERSION_MINOR) >= (2 * 1000 + 2)) // available since version 2.2.0
case IMWRITE_EXR_COMPRESSION_DWAA:
header.compression() = DWAA_COMPRESSION;
break;
case IMWRITE_EXR_COMPRESSION_DWAB:
header.compression() = DWAB_COMPRESSION;
break;
#endif
default:
CV_Error(Error::StsBadArg, "IMWRITE_EXR_COMPRESSION is invalid or not supported");
}
}
}
if( channels == 3 || channels == 4 )
{
header.channels().insert( "R", Channel( type ) );
header.channels().insert( "G", Channel( type ) );
header.channels().insert( "B", Channel( type ) );
//printf("bunt\n");
}
else
{
header.channels().insert( "Y", Channel( type ) );
//printf("gray\n");
}
if( channels % 2 == 0 )
{ // even number of channels indicates Alpha
header.channels().insert( "A", Channel( type ) );
}
OutputFile file( m_filename.c_str(), header );
FrameBuffer frame;
char *buffer;
size_t bufferstep;
int size;
Mat exrMat;
if( type == HALF )
{
convertFp16(img, exrMat);
buffer = (char *)const_cast<uchar *>( exrMat.ptr() );
bufferstep = exrMat.step;
size = 2;
}
else
{
buffer = (char *)const_cast<uchar *>( img.ptr() );
bufferstep = img.step;
size = 4;
}
if( channels == 3 || channels == 4 )
{
frame.insert( "B", Slice( type, buffer, size * channels, bufferstep ));
frame.insert( "G", Slice( type, buffer + size, size * channels, bufferstep ));
frame.insert( "R", Slice( type, buffer + size * 2, size * channels, bufferstep ));
}
else
frame.insert( "Y", Slice( type, buffer, size * channels, bufferstep ));
if( channels % 2 == 0 )
{ // even channel count indicates Alpha channel
frame.insert( "A", Slice( type, buffer + size * (channels - 1), size * channels, bufferstep ));
}
file.setFrameBuffer( frame );
result = true;
try
{
file.writePixels( height );
}
catch(...)
{
result = false;
}
return result;
}
ImageEncoder ExrEncoder::newEncoder() const
{
return makePtr<ExrEncoder>();
}
}
#endif
/* End of file. */