/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
//#include <math.h>
# include "precomp.hpp"
namespace cv
{
/*!
The class implements the following algorithm :
" Efficient Adaptive Density Estimation per Image Pixel for the Task of Background Subtraction "
Z . Zivkovic , F . van der Heijden
Pattern Recognition Letters , vol . 27 , no . 7 , pages 773 - 780 , 2006
http : //www.zoranz.net/Publications/zivkovicPRL2006.pdf
*/
// default parameters of gaussian background detection algorithm
static const int defaultHistory2 = 500 ; // Learning rate; alpha = 1/defaultHistory2
static const int defaultNsamples = 7 ; // number of samples saved in memory
static const float defaultDist2Threshold = 20.0f * 20.0f ; //threshold on distance from the sample
// additional parameters
static const unsigned char defaultnShadowDetection2 = ( unsigned char ) 127 ; // value to use in the segmentation mask for shadows, set 0 not to do shadow detection
static const float defaultfTau = 0.5f ; // Tau - shadow threshold, see the paper for explanation
class BackgroundSubtractorKNNImpl : public BackgroundSubtractorKNN
{
public :
//! the default constructor
BackgroundSubtractorKNNImpl ( )
{
frameSize = Size ( 0 , 0 ) ;
frameType = 0 ;
nframes = 0 ;
history = defaultHistory2 ;
//set parameters
// N - the number of samples stored in memory per model
nN = defaultNsamples ;
//kNN - k nearest neighbour - number on NN for detecting background - default K=[0.1*nN]
nkNN = MAX ( 1 , cvRound ( 0.1 * nN * 3 + 0.40 ) ) ;
//Tb - Threshold Tb*kernelwidth
fTb = defaultDist2Threshold ;
// Shadow detection
bShadowDetection = 1 ; //turn on
nShadowDetection = defaultnShadowDetection2 ;
fTau = defaultfTau ; // Tau - shadow threshold
name_ = " BackgroundSubtractor.KNN " ;
}
//! the full constructor that takes the length of the history,
// the number of gaussian mixtures, the background ratio parameter and the noise strength
BackgroundSubtractorKNNImpl ( int _history , float _dist2Threshold , bool _bShadowDetection = true )
{
frameSize = Size ( 0 , 0 ) ;
frameType = 0 ;
nframes = 0 ;
history = _history > 0 ? _history : defaultHistory2 ;
//set parameters
// N - the number of samples stored in memory per model
nN = defaultNsamples ;
//kNN - k nearest neighbour - number on NN for detcting background - default K=[0.1*nN]
nkNN = MAX ( 1 , cvRound ( 0.1 * nN * 3 + 0.40 ) ) ;
//Tb - Threshold Tb*kernelwidth
fTb = _dist2Threshold > 0 ? _dist2Threshold : defaultDist2Threshold ;
bShadowDetection = _bShadowDetection ;
nShadowDetection = defaultnShadowDetection2 ;
fTau = defaultfTau ;
name_ = " BackgroundSubtractor.KNN " ;
}
//! the destructor
~ BackgroundSubtractorKNNImpl ( ) { }
//! the update operator
void apply ( InputArray image , OutputArray fgmask , double learningRate = - 1 ) ;
//! computes a background image which are the mean of all background gaussians
virtual void getBackgroundImage ( OutputArray backgroundImage ) const ;
//! re-initiaization method
void initialize ( Size _frameSize , int _frameType )
{
frameSize = _frameSize ;
frameType = _frameType ;
nframes = 0 ;
int nchannels = CV_MAT_CN ( frameType ) ;
CV_Assert ( nchannels < = CV_CN_MAX ) ;
// Reserve memory for the model
int size = frameSize . height * frameSize . width ;
// for each sample of 3 speed pixel models each pixel bg model we store ...
// values + flag (nchannels+1 values)
bgmodel . create ( 1 , ( nN * 3 ) * ( nchannels + 1 ) * size , CV_8U ) ;
//index through the three circular lists
aModelIndexShort . create ( 1 , size , CV_8U ) ;
aModelIndexMid . create ( 1 , size , CV_8U ) ;
aModelIndexLong . create ( 1 , size , CV_8U ) ;
//when to update next
nNextShortUpdate . create ( 1 , size , CV_8U ) ;
nNextMidUpdate . create ( 1 , size , CV_8U ) ;
nNextLongUpdate . create ( 1 , size , CV_8U ) ;
//Reset counters
nShortCounter = 0 ;
nMidCounter = 0 ;
nLongCounter = 0 ;
aModelIndexShort = Scalar : : all ( 0 ) ; //random? //((m_nN)*rand())/(RAND_MAX+1);//0...m_nN-1
aModelIndexMid = Scalar : : all ( 0 ) ;
aModelIndexLong = Scalar : : all ( 0 ) ;
nNextShortUpdate = Scalar : : all ( 0 ) ;
nNextMidUpdate = Scalar : : all ( 0 ) ;
nNextLongUpdate = Scalar : : all ( 0 ) ;
}
virtual int getHistory ( ) const { return history ; }
virtual void setHistory ( int _nframes ) { history = _nframes ; }
virtual int getNSamples ( ) const { return nN ; }
virtual void setNSamples ( int _nN ) { nN = _nN ; } //needs reinitialization!
virtual int getkNNSamples ( ) const { return nkNN ; }
virtual void setkNNSamples ( int _nkNN ) { nkNN = _nkNN ; }
virtual double getDist2Threshold ( ) const { return fTb ; }
virtual void setDist2Threshold ( double _dist2Threshold ) { fTb = ( float ) _dist2Threshold ; }
virtual bool getDetectShadows ( ) const { return bShadowDetection ; }
virtual void setDetectShadows ( bool detectshadows ) { bShadowDetection = detectshadows ; }
virtual int getShadowValue ( ) const { return nShadowDetection ; }
virtual void setShadowValue ( int value ) { nShadowDetection = ( uchar ) value ; }
virtual double getShadowThreshold ( ) const { return fTau ; }
virtual void setShadowThreshold ( double value ) { fTau = ( float ) value ; }
virtual void write ( FileStorage & fs ) const
{
writeFormat ( fs ) ;
fs < < " name " < < name_
< < " history " < < history
< < " nsamples " < < nN
< < " nKNN " < < nkNN
< < " dist2Threshold " < < fTb
< < " detectShadows " < < ( int ) bShadowDetection
< < " shadowValue " < < ( int ) nShadowDetection
< < " shadowThreshold " < < fTau ;
}
virtual void read ( const FileNode & fn )
{
CV_Assert ( ( String ) fn [ " name " ] = = name_ ) ;
history = ( int ) fn [ " history " ] ;
nN = ( int ) fn [ " nsamples " ] ;
nkNN = ( int ) fn [ " nKNN " ] ;
fTb = ( float ) fn [ " dist2Threshold " ] ;
bShadowDetection = ( int ) fn [ " detectShadows " ] ! = 0 ;
nShadowDetection = saturate_cast < uchar > ( ( int ) fn [ " shadowValue " ] ) ;
fTau = ( float ) fn [ " shadowThreshold " ] ;
}
protected :
Size frameSize ;
int frameType ;
int nframes ;
/////////////////////////
//very important parameters - things you will change
////////////////////////
int history ;
//alpha=1/history - speed of update - if the time interval you want to average over is T
//set alpha=1/history. It is also usefull at start to make T slowly increase
//from 1 until the desired T
float fTb ;
//Tb - threshold on the squared distance from the sample used to decide if it is well described
//by the background model or not. A typical value could be 2 sigma
//and that is Tb=2*2*10*10 =400; where we take typical pixel level sigma=10
/////////////////////////
//less important parameters - things you might change but be carefull
////////////////////////
int nN ; //totlal number of samples
int nkNN ; //number on NN for detcting background - default K=[0.1*nN]
//shadow detection parameters
bool bShadowDetection ; //default 1 - do shadow detection
unsigned char nShadowDetection ; //do shadow detection - insert this value as the detection result - 127 default value
float fTau ;
// Tau - shadow threshold. The shadow is detected if the pixel is darker
//version of the background. Tau is a threshold on how much darker the shadow can be.
//Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
//See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
//model data
int nLongCounter ; //circular counter
int nMidCounter ;
int nShortCounter ;
Mat bgmodel ; // model data pixel values
Mat aModelIndexShort ; // index into the models
Mat aModelIndexMid ;
Mat aModelIndexLong ;
Mat nNextShortUpdate ; //random update points per model
Mat nNextMidUpdate ;
Mat nNextLongUpdate ;
String name_ ;
} ;
//{ to do - paralelization ...
//struct KNNInvoker....
CV_INLINE void
_cvUpdatePixelBackgroundNP ( long pixel , const uchar * data , int nchannels , int m_nN ,
uchar * m_aModel ,
uchar * m_nNextLongUpdate ,
uchar * m_nNextMidUpdate ,
uchar * m_nNextShortUpdate ,
uchar * m_aModelIndexLong ,
uchar * m_aModelIndexMid ,
uchar * m_aModelIndexShort ,
int m_nLongCounter ,
int m_nMidCounter ,
int m_nShortCounter ,
int m_nLongUpdate ,
int m_nMidUpdate ,
int m_nShortUpdate ,
uchar include
)
{
// hold the offset
int ndata = 1 + nchannels ;
long offsetLong = ndata * ( pixel * m_nN * 3 + m_aModelIndexLong [ pixel ] + m_nN * 2 ) ;
long offsetMid = ndata * ( pixel * m_nN * 3 + m_aModelIndexMid [ pixel ] + m_nN * 1 ) ;
long offsetShort = ndata * ( pixel * m_nN * 3 + m_aModelIndexShort [ pixel ] ) ;
// Long update?
if ( m_nNextLongUpdate [ pixel ] = = m_nLongCounter )
{
// add the oldest pixel from Mid to the list of values (for each color)
memcpy ( & m_aModel [ offsetLong ] , & m_aModel [ offsetMid ] , ndata * sizeof ( unsigned char ) ) ;
// increase the index
m_aModelIndexLong [ pixel ] = ( m_aModelIndexLong [ pixel ] > = ( m_nN - 1 ) ) ? 0 : ( m_aModelIndexLong [ pixel ] + 1 ) ;
} ;
if ( m_nLongCounter = = ( m_nLongUpdate - 1 ) )
{
//m_nNextLongUpdate[pixel] = (uchar)(((m_nLongUpdate)*(rand()-1))/RAND_MAX);//0,...m_nLongUpdate-1;
m_nNextLongUpdate [ pixel ] = ( uchar ) ( rand ( ) % m_nLongUpdate ) ; //0,...m_nLongUpdate-1;
} ;
// Mid update?
if ( m_nNextMidUpdate [ pixel ] = = m_nMidCounter )
{
// add this pixel to the list of values (for each color)
memcpy ( & m_aModel [ offsetMid ] , & m_aModel [ offsetShort ] , ndata * sizeof ( unsigned char ) ) ;
// increase the index
m_aModelIndexMid [ pixel ] = ( m_aModelIndexMid [ pixel ] > = ( m_nN - 1 ) ) ? 0 : ( m_aModelIndexMid [ pixel ] + 1 ) ;
} ;
if ( m_nMidCounter = = ( m_nMidUpdate - 1 ) )
{
m_nNextMidUpdate [ pixel ] = ( uchar ) ( rand ( ) % m_nMidUpdate ) ;
} ;
// Short update?
if ( m_nNextShortUpdate [ pixel ] = = m_nShortCounter )
{
// add this pixel to the list of values (for each color)
memcpy ( & m_aModel [ offsetShort ] , data , ndata * sizeof ( unsigned char ) ) ;
//set the include flag
m_aModel [ offsetShort + nchannels ] = include ;
// increase the index
m_aModelIndexShort [ pixel ] = ( m_aModelIndexShort [ pixel ] > = ( m_nN - 1 ) ) ? 0 : ( m_aModelIndexShort [ pixel ] + 1 ) ;
} ;
if ( m_nShortCounter = = ( m_nShortUpdate - 1 ) )
{
m_nNextShortUpdate [ pixel ] = ( uchar ) ( rand ( ) % m_nShortUpdate ) ;
} ;
}
CV_INLINE int
_cvCheckPixelBackgroundNP ( long pixel ,
const uchar * data , int nchannels ,
int m_nN ,
uchar * m_aModel ,
float m_fTb ,
int m_nkNN ,
float tau ,
int m_nShadowDetection ,
uchar & include )
{
int Pbf = 0 ; // the total probability that this pixel is background
int Pb = 0 ; //background model probability
float dData [ CV_CN_MAX ] ;
//uchar& include=data[nchannels];
include = 0 ; //do we include this pixel into background model?
int ndata = nchannels + 1 ;
long posPixel = pixel * ndata * m_nN * 3 ;
// float k;
// now increase the probability for each pixel
for ( int n = 0 ; n < m_nN * 3 ; n + + )
{
uchar * mean_m = & m_aModel [ posPixel + n * ndata ] ;
//calculate difference and distance
float dist2 ;
if ( nchannels = = 3 )
{
dData [ 0 ] = ( float ) mean_m [ 0 ] - data [ 0 ] ;
dData [ 1 ] = ( float ) mean_m [ 1 ] - data [ 1 ] ;
dData [ 2 ] = ( float ) mean_m [ 2 ] - data [ 2 ] ;
dist2 = dData [ 0 ] * dData [ 0 ] + dData [ 1 ] * dData [ 1 ] + dData [ 2 ] * dData [ 2 ] ;
}
else
{
dist2 = 0.f ;
for ( int c = 0 ; c < nchannels ; c + + )
{
dData [ c ] = ( float ) mean_m [ c ] - data [ c ] ;
dist2 + = dData [ c ] * dData [ c ] ;
}
}
if ( dist2 < m_fTb )
{
Pbf + + ; //all
//background only
//if(m_aModel[subPosPixel + nchannels])//indicator
if ( mean_m [ nchannels ] ) //indicator
{
Pb + + ;
if ( Pb > = m_nkNN ) //Tb
{
include = 1 ; //include
return 1 ; //background ->exit
} ;
}
} ;
} ;
//include?
if ( Pbf > = m_nkNN ) //m_nTbf)
{
include = 1 ;
}
int Ps = 0 ; // the total probability that this pixel is background shadow
// Detected as moving object, perform shadow detection
if ( m_nShadowDetection )
{
for ( int n = 0 ; n < m_nN * 3 ; n + + )
{
//long subPosPixel = posPixel + n*ndata;
uchar * mean_m = & m_aModel [ posPixel + n * ndata ] ;
if ( mean_m [ nchannels ] ) //check only background
{
float numerator = 0.0f ;
float denominator = 0.0f ;
for ( int c = 0 ; c < nchannels ; c + + )
{
numerator + = ( float ) data [ c ] * mean_m [ c ] ;
denominator + = ( float ) mean_m [ c ] * mean_m [ c ] ;
}
// no division by zero allowed
if ( denominator = = 0 )
return 0 ;
// if tau < a < 1 then also check the color distortion
if ( numerator < = denominator & & numerator > = tau * denominator )
{
float a = numerator / denominator ;
float dist2a = 0.0f ;
for ( int c = 0 ; c < nchannels ; c + + )
{
float dD = a * mean_m [ c ] - data [ c ] ;
dist2a + = dD * dD ;
}
if ( dist2a < m_fTb * a * a )
{
Ps + + ;
if ( Ps > = m_nkNN ) //shadow
return 2 ;
} ;
} ;
} ;
} ;
}
return 0 ;
}
CV_INLINE void
icvUpdatePixelBackgroundNP ( const Mat & _src , Mat & _dst ,
Mat & _bgmodel ,
Mat & _nNextLongUpdate ,
Mat & _nNextMidUpdate ,
Mat & _nNextShortUpdate ,
Mat & _aModelIndexLong ,
Mat & _aModelIndexMid ,
Mat & _aModelIndexShort ,
int & _nLongCounter ,
int & _nMidCounter ,
int & _nShortCounter ,
int _nN ,
float _fAlphaT ,
float _fTb ,
int _nkNN ,
float _fTau ,
int _bShadowDetection ,
uchar nShadowDetection
)
{
int nchannels = CV_MAT_CN ( _src . type ( ) ) ;
//model
uchar * m_aModel = _bgmodel . ptr ( 0 ) ;
uchar * m_nNextLongUpdate = _nNextLongUpdate . ptr ( 0 ) ;
uchar * m_nNextMidUpdate = _nNextMidUpdate . ptr ( 0 ) ;
uchar * m_nNextShortUpdate = _nNextShortUpdate . ptr ( 0 ) ;
uchar * m_aModelIndexLong = _aModelIndexLong . ptr ( 0 ) ;
uchar * m_aModelIndexMid = _aModelIndexMid . ptr ( 0 ) ;
uchar * m_aModelIndexShort = _aModelIndexShort . ptr ( 0 ) ;
//some constants
int m_nN = _nN ;
float m_fAlphaT = _fAlphaT ;
float m_fTb = _fTb ; //Tb - threshold on the distance
float m_fTau = _fTau ;
int m_nkNN = _nkNN ;
int m_bShadowDetection = _bShadowDetection ;
//recalculate update rates - in case alpha is changed
// calculate update parameters (using alpha)
int Kshort , Kmid , Klong ;
//approximate exponential learning curve
Kshort = ( int ) ( log ( 0.7 ) / log ( 1 - m_fAlphaT ) ) + 1 ; //Kshort
Kmid = ( int ) ( log ( 0.4 ) / log ( 1 - m_fAlphaT ) ) - Kshort + 1 ; //Kmid
Klong = ( int ) ( log ( 0.1 ) / log ( 1 - m_fAlphaT ) ) - Kshort - Kmid + 1 ; //Klong
//refresh rates
int m_nShortUpdate = ( Kshort / m_nN ) + 1 ;
int m_nMidUpdate = ( Kmid / m_nN ) + 1 ;
int m_nLongUpdate = ( Klong / m_nN ) + 1 ;
//int m_nShortUpdate = MAX((Kshort/m_nN),m_nN);
//int m_nMidUpdate = MAX((Kmid/m_nN),m_nN);
//int m_nLongUpdate = MAX((Klong/m_nN),m_nN);
//update counters for the refresh rate
int m_nLongCounter = _nLongCounter ;
int m_nMidCounter = _nMidCounter ;
int m_nShortCounter = _nShortCounter ;
_nShortCounter + + ; //0,1,...,m_nShortUpdate-1
_nMidCounter + + ;
_nLongCounter + + ;
if ( _nShortCounter > = m_nShortUpdate ) _nShortCounter = 0 ;
if ( _nMidCounter > = m_nMidUpdate ) _nMidCounter = 0 ;
if ( _nLongCounter > = m_nLongUpdate ) _nLongCounter = 0 ;
//go through the image
long i = 0 ;
for ( long y = 0 ; y < _src . rows ; y + + )
{
for ( long x = 0 ; x < _src . cols ; x + + )
{
const uchar * data = _src . ptr ( ( int ) y , ( int ) x ) ;
//update model+ background subtract
uchar include = 0 ;
int result = _cvCheckPixelBackgroundNP ( i , data , nchannels ,
m_nN , m_aModel , m_fTb , m_nkNN , m_fTau , m_bShadowDetection , include ) ;
_cvUpdatePixelBackgroundNP ( i , data , nchannels ,
m_nN , m_aModel ,
m_nNextLongUpdate ,
m_nNextMidUpdate ,
m_nNextShortUpdate ,
m_aModelIndexLong ,
m_aModelIndexMid ,
m_aModelIndexShort ,
m_nLongCounter ,
m_nMidCounter ,
m_nShortCounter ,
m_nLongUpdate ,
m_nMidUpdate ,
m_nShortUpdate ,
include
) ;
switch ( result )
{
case 0 :
//foreground
* _dst . ptr ( ( int ) y , ( int ) x ) = 255 ;
break ;
case 1 :
//background
* _dst . ptr ( ( int ) y , ( int ) x ) = 0 ;
break ;
case 2 :
//shadow
* _dst . ptr ( ( int ) y , ( int ) x ) = nShadowDetection ;
break ;
}
i + + ;
}
}
}
void BackgroundSubtractorKNNImpl : : apply ( InputArray _image , OutputArray _fgmask , double learningRate )
{
CV_INSTRUMENT_REGION ( )
Mat image = _image . getMat ( ) ;
bool needToInitialize = nframes = = 0 | | learningRate > = 1 | | image . size ( ) ! = frameSize | | image . type ( ) ! = frameType ;
if ( needToInitialize )
initialize ( image . size ( ) , image . type ( ) ) ;
_fgmask . create ( image . size ( ) , CV_8U ) ;
Mat fgmask = _fgmask . getMat ( ) ;
+ + nframes ;
learningRate = learningRate > = 0 & & nframes > 1 ? learningRate : 1. / std : : min ( 2 * nframes , history ) ;
CV_Assert ( learningRate > = 0 ) ;
//parallel_for_(Range(0, image.rows),
// KNNInvoker(image, fgmask,
icvUpdatePixelBackgroundNP ( image , fgmask ,
bgmodel ,
nNextLongUpdate ,
nNextMidUpdate ,
nNextShortUpdate ,
aModelIndexLong ,
aModelIndexMid ,
aModelIndexShort ,
nLongCounter ,
nMidCounter ,
nShortCounter ,
nN ,
( float ) learningRate ,
fTb ,
nkNN ,
fTau ,
bShadowDetection ,
nShadowDetection
) ;
}
void BackgroundSubtractorKNNImpl : : getBackgroundImage ( OutputArray backgroundImage ) const
{
CV_INSTRUMENT_REGION ( )
int nchannels = CV_MAT_CN ( frameType ) ;
//CV_Assert( nchannels == 3 );
Mat meanBackground ( frameSize , CV_8UC3 , Scalar : : all ( 0 ) ) ;
int ndata = nchannels + 1 ;
int modelstep = ( ndata * nN * 3 ) ;
const uchar * pbgmodel = bgmodel . ptr ( 0 ) ;
for ( int row = 0 ; row < meanBackground . rows ; row + + )
{
for ( int col = 0 ; col < meanBackground . cols ; col + + )
{
for ( int n = 0 ; n < nN * 3 ; n + + )
{
const uchar * mean_m = & pbgmodel [ n * ndata ] ;
if ( mean_m [ nchannels ] )
{
meanBackground . at < Vec3b > ( row , col ) = Vec3b ( mean_m ) ;
break ;
}
}
pbgmodel = pbgmodel + modelstep ;
}
}
switch ( CV_MAT_CN ( frameType ) )
{
case 1 :
{
std : : vector < Mat > channels ;
split ( meanBackground , channels ) ;
channels [ 0 ] . copyTo ( backgroundImage ) ;
break ;
}
case 3 :
{
meanBackground . copyTo ( backgroundImage ) ;
break ;
}
default :
CV_Error ( Error : : StsUnsupportedFormat , " " ) ;
}
}
Ptr < BackgroundSubtractorKNN > createBackgroundSubtractorKNN ( int _history , double _threshold2 ,
bool _bShadowDetection )
{
return makePtr < BackgroundSubtractorKNNImpl > ( _history , ( float ) _threshold2 , _bShadowDetection ) ;
}
}
/* End of file. */